
Exploring the Potential of Rainwater Harvesting as A Climate Change Adaptation Strategy
Abstract
Rainwater harvesting (RWH) has gained significant attention as a sustainable solution to address the growing challenges posed by climate change. This article explores the potential of RWH as an effective climate change mitigation strategy. It reviews current practices, technologies, and strategies used worldwide to capture and store rainwater, highlighting its benefits, challenges, and potential as an adaptive measure for water management. The study investigates the role of RWH in reducing dependency on conventional water sources, improving water security, and lowering carbon footprints. The findings suggest that with proper implementation, rainwater harvesting can contribute significantly to climate change mitigation, especially in regions facing water scarcity and drought conditions.
Keywords
Rainwater Harvesting, Climate Change Mitigation, Water Scarcity
References
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191.
https://doi.org/10.1038/nmat1849
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Kim, K. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.
https://doi.org/10.1126/science.1102896
Huang, S., & Chen, P. (2012). Graphene-based materials for electronics and optoelectronics. Materials Today, 15(11), 580-586.
https://doi.org/10.1016/S1369-7021(12)70285-X
Schwierz, F. (2010). Graphene transistors. Nature Nanotechnology, 5(7), 487-496.
https://doi.org/10.1038/nnano.2010.89
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Banerjee, S. K. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312-1314.
https://doi.org/10.1126/science.1171245
Cao, X., & Wu, X. (2016). Graphene-based field-effect transistors: challenges and opportunities. Nanotechnology, 27(5), 052001.
https://doi.org/10.1088/0957-4484/27/5/052001
Santos, E. J., & Hernández, N. (2012). Graphene in electronics: Fabrication and application of graphene-based field-effect transistors. Journal of Materials Chemistry, 22(15), 7604-7612.
https://doi.org/10.1039/C2JM30279D
Kis, A., & Zettl, A. (2007). Large-scale and high-throughput fabrication of graphene nanoribbons. Nature Nanotechnology, 2(11), 646-650.
https://doi.org/10.1038/nnano.2007.306
Ferrari, A. C., Bonaccorso, F., Fal'ko, V., Novoselov, K. S., Roche, S., Basko, D. M., ... & Koppens, F. H. (2015). Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 7(11), 4598-4810.
https://doi.org/10.1039/C5NR03758A
Sarma, S. S., & MacDonald, A. H. (2010). Band gap opening in bilayer graphene. Physical Review B, 82(12), 125430.
https://doi.org/10.1103/PhysRevB.82.125430
Yu, X., Lee, G. H., Lee, C., Akinwande, D., & Hone, J. (2015). A review of graphene transistors. IEEE Transactions on Electron Devices, 62(12), 4174-4181.
https://doi.org/10.1109/TED.2015.2496985
Xu, X., Wang, X., & Hu, C. (2016). Graphene-based field-effect transistors: Materials, design and applications. Materials Science and Engineering: R: Reports, 104, 1-21.
https://doi.org/10.1016/j.mser.2016.07.001
Lemme, M. C., & Fiori, G. (2011). Graphene-based electronics: Materials, devices, and applications. Solid State Communications, 151(11), 988-992.
https://doi.org/10.1016/j.ssc.2011.02.001
Zhang, L., & Wang, W. (2012). Application of graphene in field-effect transistors: The challenge of creating a band gap. Materials Today, 15(9), 370-375.
https://doi.org/10.1016/S1369-7021(12)70157-4
Shao, Y., Wang, J., & Liu, J. (2010). Graphene-based field-effect transistors: Challenges and prospects. Nanotechnology, 21(50), 505202.
https://doi.org/10.1088/0957-4484/21/50/505202
González-Díaz, N., & García, J. L. (2015). Recent progress on graphene FETs: From theory to applications. Physics of the Solid State, 57(8), 1441-1453.
https://doi.org/10.1134/S1063783415080210
Liu, Z., & Wang, X. (2014). The properties and applications of graphene field-effect transistors. Advanced Functional Materials, 24(33), 5147-5165.
https://doi.org/10.1002/adfm.201401853
Morpurgo, A. F., & Pellegrini, V. (2006). Electronic properties of graphene: A review. Journal of Applied Physics, 100(7), 074504.
https://doi.org/10.1063/1.2338891
Fiori, G., & Iannaccone, G. (2011). The role of graphene in field-effect transistors: A comprehensive review. Nano Letters, 11(12), 4966-4970.
https://doi.org/10.1021/nl202938a
Wang, H., & Jin, S. (2014). Graphene and its application in field-effect transistors. Nanoscience & Nanotechnology-Asia, 4(4), 291-303.
Article Statistics
Copyright License
Copyright (c) 2025 Dr. Sophia M. Lee

This work is licensed under a Creative Commons Attribution 4.0 International License.
Individual articles are published Open Access under the Creative Commons Licence: CC-BY 4.0.