

RESEARCH ARTICLE

Ways Of Designing Pedagogical Technology For Developing Professional Communication On The Basis Of Deontological Approaches

Sulaymanbekov Oybek Dusbekovich

First Deputy Director for Youth Affairs and Spiritual–Educational Work at the Tashkent Branch of Samarkand State University of Veterinary Medicine, Animal Husbandry and Biotechnologies; Doctor of Philosophy (PhD) in Pedagogical Sciences, Uzbekistan

VOLUME: Vol.06 Issue01 2026

PAGE: 120-123

Copyright © 2026 European International Journal of Pedagogics, this is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License. Licensed under Creative Commons License a Creative Commons Attribution 4.0 International License.

Abstract

This article examines key aspects of designing pedagogical technology for developing professional mobility on the basis of deontological approaches. Pedagogical deontology—understood as ethical and professional responsibility within the educational process—occupies a central place in teachers' professional practice. The article emphasizes the significance of deontological approaches in increasing the effectiveness of pedagogical technologies and in preparing teachers for professional mobility.

KEY WORDS

Deontological approach, technology, design, module, aspect, motive, motivation, emotional, affiliation, adaptation, need, reference group, phenomenon, ability, assimilation, accommodation, professional adaptation, professional competence.

INTRODUCTION

In the development of the education system and in the process of enhancing teachers' professional qualifications, pedagogical deontology is of great importance. Teachers function not only as transmitters of knowledge, but also as individuals who bear moral and social responsibility toward their students. The formation of teachers' professional mobility is directly connected with deontological approaches—namely, ethical norms and professional responsibility in the educational process—which determine how teachers fulfill their duties and how they influence learners. Today, applying modern approaches and methodologies in designing pedagogical technologies plays an important role in increasing teachers' professional mobility. The importance of deontological approaches in preparing teachers for professional mobility lies in the fact that, by taking ethical norms into account in the teaching process, new opportunities emerge for improving the

quality of education.

On the eve of the twenty-first century, G. K. Selevko created a major methodological work—an *учебное пособие* (teaching manual)—devoted to pedagogical technologies, in which a classification of pedagogical technologies is presented [1]. The scholar divides pedagogical technologies into twelve types: (1) by the level of application (general pedagogical; subject-specific; local, modular, narrowly pedagogical); (2) by philosophical foundations (materialism, idealism, dialectical, metaphysical, humanistic, anti-humanistic, anthroposophy, theosophy, pragmatism, existentialism, Zionism); (3) by leading factors of psychological development (biogenic, sociogenic, psychogenic, idealistic); (4) by the concept of mastery/learning (associative-reflex, developmental, behavioristic, Gestalt technology, suggestive, neurolinguistic); (5) by orientation to personality structure (informational,

operational, emotional-artistic, emotional-moral, self-developmental, heuristic, practical); (6) by the character of content and structure (educational and upbringing; secular and religious; general education and vocationally oriented; humanitarian and technocratic; various field technologies; subject-specific and monotechnologies; polytechnologies); (7) by organizational forms (class-lesson; alternative; academic; individual; group; collective learning methods; differentiated learning); (8) by the type of organization and management of cognitive activity (classical lecture instruction; teaching with audiovisual technical means; "consultant system"; book-based instruction; "small group" system; computer-based instruction; "tutor" system; "programmed learning" – V. P. Bespalko); (9) by approach to the child/learner (authoritarian, didactocentric, personality-oriented technologies, cooperation technology, free education technology, esoteric technologies); (10) by dominant methods (reproductive, explanatory-illustrative, developmental learning, problem-based learning, creative, programmed learning, dialogic, game-based learning, self-instruction, informational learning); (11) by directions for renewing existing traditional systems (humanization and democratization of relations; activation and intensification of children's activities; efficiency of organization and management; methodological and didactic reconstruction of learning material; nature-conformity and alternative technologies; a unified technology of an authorial school); (12) by category of learners (mass technology, advanced learning, compensatory; technologies for working with underachievers; technologies for working with gifted learners).

In pedagogical theory and practice, many approaches are used in the teaching and upbringing process. These approaches characterize pedagogical technologies and determine their features related to content, goals, methods, and tools. However, many pedagogical technologies share similarities, which makes it possible to classify them into several types. In designing pedagogical technologies to form professional mobility on the basis of deontological approaches, ethical norms and professional responsibility play an important role [2]. Teachers in the educational process should not only provide knowledge, but also contribute to learners' personal development. This requires taking deontological principles into account when designing pedagogical technologies.

In the process of designing pedagogical technologies on the basis of deontological approaches, professional mobility can

be formed through the following pathways: (1) ethical norms—defining ethical standards for teachers and ensuring compliance with them increases social responsibility in the educational process and helps make teachers' professional activities more effective; (2) a student-centered approach—considering students' needs and interests when designing pedagogical technologies supports the growth of teachers' professional mobility, and teachers should organize instruction with attention to learners' individual characteristics; (3) innovative methods—through the use of modern pedagogical technologies, teachers continually renew their knowledge and skills, and such innovative approaches are essential for enhancing professional mobility; (4) cooperation and communication—mutual cooperation, exchange of views, and communication between teachers and students enables more effective use of pedagogical technologies and has a positive impact on teachers' professional development [3]. These approaches are crucial for shaping teachers' professional mobility when pedagogical technologies are designed in line with deontological principles. Teachers must act not only as instructors, but also as individuals who recognize and uphold ethical responsibility.

In higher education institutions, the instructional process is oriented toward the formation and development of an individual mastering a specific type of professional activity. In today's context of emerging market relations, training modern specialists requires new forms, methods, and content of instruction. Over the last decades, modular instruction (block-modular, modular-rating, modular-context) has become widespread. One of the least studied issues in the theory and practice of modular instruction technology is the description of processes involved in creating learning modules [4]. When forming professional communication on the basis of deontological approaches, it is advisable to implement the process of selecting materials for a modular program through the following stages:

1. Modeling: At this stage, selecting the content of an academic subject is carried out on the basis of an algorithm for modeling. Teachers, taking into account ethical norms and professional responsibility, should be attentive when creating modules by considering students' needs and interests. This process supports learners' personal development and contributes to increasing their professional mobility.
2. Designing: The second stage of developing a learning module is creating a project. At this stage, the "module idea"

is refined to a level that makes it applicable within a specific educational and instructional environment. Teachers should take into account students' level of preparedness and individual characteristics and must feel ethical responsibility while designing the module. This, in turn, helps enhance students' professional mobility.

3. Constructing: At this stage, the materials and methods needed to implement modules in practice are

developed. By designing pedagogical technologies on the basis of deontological principles, teachers contribute to strengthening students' readiness for professional activity and increasing their social responsibility.

Depending on the level of mastery, designing content is carried out in conjunction with selecting teaching methods that guide students toward shifting to either a fully in-depth or a shortened instructional variant.

Table 1.

Steps	Content
1.	To develop a system of cognitive objectives, proceeding from the possibilities of the academic subject and the overall goal of specialist training.
2.	To select the invariant component of the curriculum content.
2.1.	First method: to select the leading ideas and concepts of the discipline in accordance with the State Educational Standard (DTS), and to enrich these ideas and concepts depending on the level of studying the discipline (worldview, theoretical, practical, etc.).
2.2.	Second method: depending on the direction/specialization of instruction, to select one or several leading ideas and concepts related to the discipline. Scheme: for a unit/section—leading idea and concept → corresponding theory and law; for a topic—leading idea → concepts necessary to master this idea; for a lesson—the minimum set of facts (evidence) necessary to <i>пакрыть</i> (reveal) the content of the concept.
3.	To select the variable component of the curriculum content aimed at forming students' needs for cognition of activities and relationships.
3.1.	History of the discipline. Biographies of scholars.
3.2.	Analysis of real-life situations; drawing on students' everyday

	social experience; elevating students' everyday representations to the level of scientific concepts.
3.3.	Using material of aesthetic, ethical, and ecological significance.
4.	To design the syllabus (curriculum) and the technological map (lesson/teaching plan).

In the design process, compiling instructional modules and developing the conceptual framework of the academic discipline is of great importance. This process includes the following main stages. First, compiling the instructional modules: At this stage, the content and structure of the modules are defined. Each module should include a specific topic, learning objectives, instructional materials, and assessment criteria. In compiling the modules, it is necessary to develop them in line with students' needs, the requirements of professional practice, and contemporary educational standards. Second, forming the conceptual framework: The conceptual framework of the discipline—that is, the key concepts, terms, and theories—is identified. This is essential for a deeper understanding of the course content and for delivering knowledge to students effectively. When shaping the conceptual framework, the teacher should take ethical norms and professional responsibility into account, since this supports the development of students' professional mobility. Third, methodological tasks: It is also important to define methodological tasks within the design process. These tasks should focus on organizing the learning process, selecting appropriate teaching methods, and ensuring students' active participation. As the third stage of design, methodological tasks contribute to improving the effectiveness of instruction.

технология ва педагогик маҳорат фанининг ўқув машғулотларини лойиҳалаш (Педагогик технология миллий моделининг амалиётга татбиғи). Ўқув кўлланма. Т.: "Тафаккур-бўстони", 2012. -196 б

REFERENCES

1. Селевко Г.К. Современные образовательные технологии.- М.: Народное образование, 1998. - 256 с.
2. Смирнов, В. Д. Педагогика и психология высшего образования: от деятельности к личности. М.: Аспект Пресс, 1995. - 271 с.
3. Педагогика: Учебное пособие для студентов педагогических учебных заведений / В. А. Сластенин, И. Ф. Исаев, А. И. Мищенко, Е. Н. Шиянов.
4. Тожиев М., Зиёмухаммадов Б., Ўралова М. Педагогик