

RESEARCH ARTICLE

Sustainable Bio-Derived Materials And Clean Beauty Innovations: Integrating Eggshell Membrane, Marine And Botanical Actives For Skin Health In The Era Of Microplastic Pollution

Dr. Elena Martínez-García

Department of Pharmaceutical Sciences, Universidad de Barcelona, Spain

VOLUME: Vol.06 Issue01 2026

PAGE: 01-05

Copyright © 2026 European International Journal of Pedagogics, this is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License. Licensed under Creative Commons License a Creative Commons Attribution 4.0 International License.

Abstract

The global personal care and cosmetics industry is undergoing a profound transformation driven by environmental awareness, consumer demand for transparency, and increasing scientific understanding of skin biology. Central to this transformation is the clean beauty movement, which emphasizes safety, sustainability, and efficacy while minimizing ecological harm. Concurrently, the pervasive issue of microplastic pollution has intensified scrutiny of conventional cosmetic ingredients and formulations. This research article presents a comprehensive, integrative analysis of bio-derived materials and natural actives relevant to skin care, with particular emphasis on eggshell membrane, marine-derived compounds, and botanical extracts. Drawing exclusively on established scientific literature, this study synthesizes knowledge from materials science, dermatological biology, environmental science, and cosmetic formulation. Eggshell membrane is examined as a multifunctional biomaterial rich in collagenous proteins and glycosaminoglycans, offering promising applications in skin repair, hydration, and connective tissue support. Marine bioactives, including fucoxanthin, are discussed in the context of antioxidant protection and sustainable sourcing, while plant-derived ingredients such as Aloe vera are evaluated for their long-standing dermatological relevance. The molecular mechanisms of skin hydration, the role of pH in barrier function, and the implications of microplastic contamination are explored in depth. By critically analyzing current evidence, identifying conceptual and practical limitations, and outlining future research directions, this article contributes a robust theoretical framework for advancing sustainable, effective, and environmentally responsible skin care innovations aligned with clean beauty principles.

KEY WORDS

Clean beauty, Eggshell membrane, Skin hydration, Microplastic pollution, Sustainable cosmetics, Bio-derived actives.

INTRODUCTION

The modern skin care and cosmetics industry exists at the intersection of science, consumer culture, and environmental stewardship. Over recent decades, rapid industrialization and mass consumption have generated unprecedented volumes of synthetic materials, many of which persist in ecosystems and biological systems. Among the most concerning of these

materials are microplastics, defined as plastic particles typically less than five millimeters in diameter, which have been detected across diverse aquatic environments, including freshwater systems such as the Laurentian Great Lakes (Eriksen et al., 2013). While microplastics were once primarily associated with industrial waste and packaging, increasing

evidence suggests that personal care products have historically contributed to their environmental dissemination through the inclusion of plastic-based exfoliants and polymeric film-formers.

In parallel with growing awareness of environmental contamination, consumer perceptions of beauty and wellness have shifted markedly. The clean beauty movement has emerged as both a market-driven and ideologically grounded response to concerns regarding ingredient safety, ecological sustainability, and ethical sourcing (Euromonitor International, 2022). Clean beauty does not represent a single regulatory category but rather a constellation of principles emphasizing minimalism, transparency, and the preferential use of naturally derived or bio-compatible ingredients. This movement has catalyzed renewed scientific interest in materials historically regarded as by-products or waste, such as eggshell membranes, as well as marine and botanical resources with demonstrated bioactivity.

Human skin is a complex, multifunctional organ whose health depends on structural integrity, biochemical signaling, hydration balance, and microbial equilibrium. The stratum corneum, composed of corneocytes embedded in a lipid matrix, acts as a primary barrier against environmental insults while regulating transepidermal water loss. Disruption of this barrier, whether through harsh chemicals, inappropriate pH, or inflammatory processes, can lead to dryness, sensitivity, and disease (Surber et al., 2018). Consequently, contemporary skin care research increasingly focuses on ingredients that support barrier repair, hydration, and anti-inflammatory responses at the molecular level.

Within this context, eggshell membrane has attracted attention as a naturally derived biomaterial rich in structural proteins, including various forms of collagen, as well as glycosaminoglycans such as hyaluronan (Gelse et al., 2003; Jiang et al., 2014). Traditionally discarded as agricultural waste, eggshell membranes represent a compelling example of circular economy principles applied to cosmetic science. Their biochemical composition aligns closely with endogenous skin components, suggesting potential for high biocompatibility and functional synergy.

Despite growing interest, the integration of eggshell membrane and other bio-derived actives into mainstream skin care remains uneven, constrained by gaps in mechanistic understanding, standardization challenges, and regulatory ambiguity. Moreover, the broader environmental implications

of replacing synthetic polymers with natural alternatives require careful evaluation to avoid unintended ecological consequences. This article addresses these issues by synthesizing existing literature into a cohesive theoretical analysis, identifying opportunities for innovation while critically examining limitations. By situating eggshell membrane, marine bioactives, and botanical extracts within the broader discourse of clean beauty and environmental sustainability, this research aims to contribute a comprehensive academic perspective that supports future empirical and applied investigations.

METHODOLOGY

The present research adopts a qualitative, integrative methodology grounded in comprehensive literature analysis. Rather than generating new experimental data, this study systematically examines and synthesizes findings from peer-reviewed scientific publications, industry reports, and authoritative reviews relevant to skin biology, biomaterials, and environmental science. The exclusive use of the provided references ensures conceptual coherence and traceability of claims while allowing for deep theoretical elaboration.

The methodological approach begins with thematic categorization of the literature into four primary domains: environmental context and microplastic pollution; skin structure, hydration, and barrier function; bio-derived materials with relevance to skin care; and clean beauty market dynamics. Within each domain, key concepts and mechanisms are identified and analyzed in detail. For example, microplastic pollution is explored not merely as an environmental phenomenon but as a driver of consumer behavior and regulatory scrutiny that indirectly shapes cosmetic formulation strategies (Eriksen et al., 2013; Euromonitor International, 2022).

In examining bio-derived materials, particular emphasis is placed on eggshell membrane. Studies addressing its composition, safety, antioxidant activity, and biomedical applications are analyzed to extrapolate potential cosmetic benefits (Kingori, 2011; Mikami et al., 2012; Park et al., 2015; Sakai et al., 2018). This analysis is contextualized within established knowledge of collagen structure and biosynthesis, as well as the biological roles of hyaluronan in tissue repair and hydration (Gelse et al., 2003; Jiang et al., 2014).

Marine and botanical actives are incorporated through focused examination of fucoxanthin derived from brown seaweed and

plant extracts commonly used in skin care, including Aloe vera (Rajauria & Abu-Ghannam, 2013; Ribeiro et al., 2015; Surjushe et al., 2008). These ingredients are evaluated in terms of antioxidant potential, bioavailability, and compatibility with clean beauty principles.

Throughout the methodology, analytical rigor is maintained by explicitly linking interpretive statements to source material. Counter-arguments and uncertainties are acknowledged, particularly where evidence is indirect or extrapolated from non-dermatological contexts. This reflective approach ensures that conclusions are proportionate to the strength of available evidence and highlights areas requiring further empirical validation.

RESULTS

The integrative analysis yields several interrelated findings that collectively illuminate the potential of bio-derived materials in advancing sustainable skin care. First, the environmental analysis confirms that microplastic pollution represents both a tangible ecological threat and a symbolic catalyst for reform within the cosmetics industry. The detection of microplastics in freshwater systems such as the Great Lakes underscores the persistence and mobility of synthetic polymers, challenging assumptions that cosmetic-derived plastics are environmentally negligible (Eriksen et al., 2013). This finding reinforces the urgency of developing alternative materials that fulfill functional requirements without contributing to long-term pollution.

Second, examination of skin biology literature highlights the centrality of hydration and barrier integrity to overall skin health. Molecular reviews of skin hydration mechanisms reveal the intricate interplay between natural moisturizing factors, intercellular lipids, and extracellular matrix components (Verdier-Sévrain & Bonté, 2007). Hyaluronan emerges as a critical glycosaminoglycan involved in water retention, cell migration, and inflammatory modulation, particularly during tissue injury and repair (Jiang et al., 2014). These insights provide a biological rationale for incorporating hyaluronan-rich or hyaluronan-stimulating materials into topical formulations.

Third, the analysis of eggshell membrane literature demonstrates its multifaceted composition and functional promise. Eggshell membrane contains a complex matrix of collagens, elastin-like proteins, and glycosaminoglycans, aligning closely with the structural components of human connective tissue (Gelse et al., 2003; Kingori, 2011). Safety

evaluations indicate that processed eggshell membrane powder is well tolerated as a food ingredient, suggesting a favorable safety profile that may extend to topical applications (Mikami et al., 2012). Furthermore, in vitro studies reveal antioxidant activity in hydrolyzed eggshell membrane, indicating potential protective effects against oxidative stress, a key factor in skin aging (Park et al., 2015).

Fourth, marine and botanical actives are shown to contribute complementary benefits. Fucoxanthin isolated from brown seaweed exhibits notable antioxidant properties, positioning it as a candidate for mitigating environmental stressors on skin (Rajauria & Abu-Ghannam, 2013). Plant extracts, including Aloe vera, are widely recognized for their soothing, moisturizing, and anti-inflammatory effects, supported by both traditional use and scientific review (Surjushe et al., 2008; Ribeiro et al., 2015). These ingredients align well with clean beauty narratives emphasizing natural origin and functional efficacy.

Finally, market analysis contextualizes these scientific findings within broader consumer and industry trends. Clean beauty is identified as both an opportunity and a challenge, requiring rigorous substantiation of claims and careful navigation of regulatory landscapes (Euromonitor International, 2022). The convergence of environmental concern, scientific innovation, and consumer demand creates a fertile yet complex environment for the adoption of bio-derived skin care ingredients.

DISCUSSION

The findings of this integrative analysis invite a nuanced discussion of how bio-derived materials can reshape skin care science and practice. At a theoretical level, the alignment between eggshell membrane composition and human skin biology suggests a form of biomimicry that may enhance compatibility and efficacy. Collagen, as a primary structural protein in the dermis, plays a crucial role in tensile strength and elasticity. Its biosynthesis and organization are tightly regulated processes that decline with age and environmental exposure (Gelse et al., 2003). While topical collagen does not directly integrate into the dermal matrix, its presence may influence hydration and surface smoothness, and its degradation products could potentially signal reparative pathways.

The inclusion of hyaluronan-related components further strengthens the case for eggshell membrane as a

multifunctional ingredient. Hyaluronan's capacity to bind water and modulate inflammatory responses positions it as a cornerstone of modern moisturizing strategies (Jiang et al., 2014; Verdier-Sévrain & Bonté, 2007). By providing a naturally balanced matrix of proteins and polysaccharides, eggshell membrane may offer synergistic benefits that exceed those of isolated compounds.

However, significant challenges remain. One limitation lies in the variability of eggshell membrane composition, which can be influenced by factors such as poultry diet, processing methods, and extraction techniques (Kingori, 2011). Standardization is essential to ensure consistent performance and safety in cosmetic applications. Additionally, while oral supplementation studies suggest benefits for joint and connective tissue health (Ruff et al., 2012), extrapolating these findings to topical use requires caution. Skin absorption, stability in formulations, and interactions with other ingredients must be thoroughly investigated.

The environmental implications of sourcing bio-derived materials also warrant critical scrutiny. Although eggshell membranes are a by-product of the food industry, large-scale utilization could alter waste management systems and supply chains. Similarly, marine-derived ingredients like fucoxanthin must be sourced sustainably to avoid overharvesting and ecosystem disruption (Rajauria & Abu-Ghannam, 2013). Clean beauty, therefore, should be understood not merely as ingredient substitution but as a holistic approach encompassing life cycle assessment and ethical sourcing.

From a dermatological perspective, the role of skin pH emerges as a critical factor in formulation design. Healthy skin maintains a mildly acidic pH that supports barrier function and microbial balance (Surber et al., 2018). Bio-derived ingredients must be formulated in a manner that preserves this delicate equilibrium. Plant extracts and natural polymers can vary in pH and buffering capacity, necessitating careful adjustment to prevent irritation or barrier disruption.

Future research directions are abundant. Empirical studies evaluating the topical efficacy of eggshell membrane in controlled clinical settings would significantly advance the field. Investigations into nano- or micro-scale processing techniques could enhance bioavailability while avoiding the pitfalls associated with synthetic microplastics. Comparative studies examining the performance of bio-derived versus synthetic polymers in film formation, sensory properties, and environmental impact would further inform formulation

decisions.

CONCLUSION

This research article has presented an extensive theoretical exploration of sustainable bio-derived materials within the context of clean beauty and environmental responsibility. By synthesizing literature on microplastic pollution, skin biology, eggshell membrane, and natural actives, the analysis demonstrates that scientifically grounded alternatives to conventional cosmetic ingredients are both feasible and promising. Eggshell membrane, in particular, exemplifies the potential of circular economy principles to generate high-value skin care ingredients from agricultural by-products.

The integration of marine and botanical actives further enriches the formulation landscape, offering antioxidant, soothing, and hydrating benefits aligned with consumer expectations and biological mechanisms. Nevertheless, the transition toward sustainable skin care requires rigorous scientific validation, standardization, and ethical sourcing to ensure that environmental benefits are realized without compromising efficacy or safety.

Ultimately, the clean beauty movement represents not a rejection of science but an invitation to deepen scientific inquiry into materials that harmonize human health with ecological integrity. By embracing interdisciplinary research and critical analysis, the cosmetics industry can contribute meaningfully to both skin health and environmental stewardship.

REFERENCES

1. Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., & Amato, S. (2013). Microplastic pollution in the surface waters of the Laurentian Great Lakes. *Marine Pollution Bulletin*, 77(1-2), 177-182.
2. Euromonitor International. (2022). Clean beauty: Opportunities and challenges.
3. Gelse, K., Pöschl, E., & Aigner, T. (2003). Collagens—structure, function, and biosynthesis. *Advanced Drug Delivery Reviews*, 55(12), 1531-1546.
4. Jiang, D., Liang, J., & Noble, P. W. (2014). Hyaluronan in tissue injury and repair. *Annual Review of Cell and Developmental Biology*, 23, 435-461.
5. Kingori, A. M. (2011). A review of the uses of poultry eggshells and shell membranes. *International Journal of*

Poultry Science, 10(11), 908–912.

6. Mikami, M., Takayama, F., Mizutani, H., & Yamamoto, T. (2012). Safety evaluation of eggshell membrane powder as an ingredient in health food. *Journal of Food Science*, 77(5), T110–T114.
7. Park, H., Jung, S., & Kim, S. (2015). Antioxidant activity of hydrolyzed eggshell membrane in vitro. *Food Science and Biotechnology*, 24(3), 1023–1029.
8. Rajauria, G., & Abu-Ghannam, N. (2013). Isolation and partial characterization of bioactive fucoxanthin from *Himanthalia elongata* brown seaweed. *Food and Function*, 4(4), 567–574.
9. Ribeiro, A. S., Estanqueiro, M., Oliveira, M. B., & Sousa Lobo, J. M. (2015). Main benefits and applicability of plant extracts in skin care products. *Cosmetics*, 2(2), 48–65.
10. Ruff, K. J., DeVore, D. P., Leu, M. D., & Robinson, M. A. (2012). Eggshell membrane: A possible new natural therapeutic for joint and connective tissue disorders. *Clinical Interventions in Aging*, 7, 267–273.
11. Sakai, M., Yamaguchi, T., & Uchida, Y. (2018). Characterization of eggshell membrane as a scaffold for tissue engineering. *Journal of Biomaterials Science, Polymer Edition*, 29(6), 641–654.
12. Surber, C., Dragicevic, N., & Kottner, J. (2018). Skin care products for healthy and diseased skin. In *pH of the Skin: Issues and Challenges* (Vol. 54, pp. 183–200).
13. Surjushe, A., Vasani, R., & Saple, D. G. (2008). Aloe vera: A short review. *Indian Journal of Dermatology*, 53(4), 163–166.
14. Verdier-Sévrain, S., & Bonté, F. (2007). Skin hydration: a review on its molecular mechanisms. *Journal of Cosmetic Dermatology*, 6(2), 75–82.