EUROPEAN INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND MANAGEMENT STUDIES

VOLUME03 ISSUE06

DOI: https://doi.org/10.55640/eijmrms-03-06-08

Pages: 33-39

THE STUDY OF THE PROPERTIES OF POLYMER COMPOSITIONS AND PARTS CREATED ON ITS BASIS FOR THE AUTOMOTIVE INDUSTRY

Usmanov Ikromjon

Managing Director Of Jv Llc "Uzauto Cepla", Republic Of Uzbekistan, Tashkent, Uzbekistan

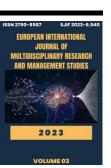
Aikhodzhaev Bobir

Associate Professor Of The Department "Technology Of High Molecular Weight Compounds And Plastics Tashkent Chemical-Technological Institute, Republic Of Uzbekistan, Tashkent ", Uzbekistan

Rajabov Rakhimboy Jaloliddin O'gli

Head Of R&D Department, Jv Llc "Uzauto Cepla", Republic Of Uzbekistan, Tashkent, Uzbekistan

Kurbanbekov Farrukh


Head Of Manufacturing Department, Jv Llc "Uzauto Cepla", Republic Of Uzbekistan, Tashkent, Uzbekistan

ABOUT ARTICLE						
Key words: Minimal moisture, ISO, tensile	Abstract: The article illustrates the results of					
modulus, heat deflection temperature,	laboratory studies of various composite					
flammability, shrinkage, cylinder temperature.	materials for plastic parts of cars, the company					
	"General Motors". As a result, compositions					
Received: 01.06.2023	corresponding to the requirements of the GMW					
Accepted: 05.06.2023	standard were obtained. The modes of					
Published: 08.06.2023	manufacturing these parts are also					
	recommended.					

INTRODUCTION

In previous works [1-5], data were presented on the use of polymer compositions for the automotive industry based on polypropylene and fillers produced by LLC "Uz-Kor Gas Chemical". At this stage of research, it becomes necessary to create compositions for specific details. As a study, plastic parts used for both outside (exterior) and inside (interior) of cars were tested.

Experimental technique. Polypropylene compositions of various types for the automotive industry were selected as studies. The requirements of these brands contain data that the newly created composition must comply with. As an experiment, the following grades of the composition of internal door skins were chosen: grade CW452B –UZ is used for the manufacture of the DUCT-WS Defroster Nozzle part and CW452U-UZ for the RR Door Trim ASM LH/RH part. The brands CEW 670U-UZ (part

FASCIA-RR BPR LWR), and CEW676U-UZ (part FASCIA-RR BPR LWR), vehicles produced by "UZAUTO MOTORS" JSC were used as external plastic parts.

The compositions were made on the basis of polypropylene copolymers produced by the JV LLC "Uz-Kor Gas Chemical", for the possible replacement of other types of polymer. Such a need arose due to the fact that the production of the polymer and the composition from it, as well as the parts from this composition, are located in the same region in the Republic of Uzbekistan.

RESULTS

The performance of the obtained compositions and their comparison with the required data are shown in tables 1-4. For the reliability of the data obtained, the standard average square deviation - σ was calculated. This indicator is calculated on the basis of at least 30 experimental data. Both physical-mechanical and thermophysical parameters of the composition were studied.

Table 1					
Properties	Standard	Required index	CW452 B-UZ	Average. square Deviation σ	
Melt Flow Rate, 230/2.16	ISO 1133	14-25	21.9	0,5625	
Density, g/cm ³	ISO1183-A	0.980-1.02	1.018	0,0028	
ASH content, % by mass	ISO3451-1	13-17	16.2	0,4986	
Tensile Modulus, 1 mm/min, MPa	ISO-527-1/2	2100-2700	2246	47,8852	
Tensile Stress at Yield, 50 mm/min, MPa	ISO-527-1/2	≥26	26,9	0,4342	
Notched Charpy Impact Strength at +23 °C, kJ/m ²	ISO-179/1EA	≥ 4	4,3	0,169	
Notched Charpy Impact Strength at -30 °C, kJ/m ²	ISO-179/1EA	≥2	2,3	0,0868	
Heat Deflection Temperature(1.8MPa)	ISO-75-2	≥ 55	57	0,9745	
Mold Shrink after 48 hour, %	ISO-294	0,9-1,2	0,952	-	

The results of laboratory studies of the composition CW452B-UZ

The results of laboratory studies of the composition CW452U-UZ

Table 2						
Properties Standard Required CW452U- Avera						
		index	UZ	Deviation σ		
Melt Flow Rate, 230/2.16	ISO 1133	11-23	22,1	0,5796		
Density, g/cm ³	ISO1183-A	0,99-1,06	1,040	0,0035		
ASH content, % by mass	ISO3451-1	13-22	20,0	0,4347		
Flexural Modulus, 1 mm/min, MPa	ISO-178	1500-1900	1734	46.1215		
Tensile Modulus, 1 mm/min, MPa	ISO-527-1/2	1600-2000	1837	46,7371		
Tensile Stress at Yield, 50 mm/min, MPa	ISO-527-1/2	≥17	20,0	0,3986		

EUROPEAN INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND MANAGEMENT STUDIES

Notched Charpy Impact Strength at +23 °C, kJ/m ²	ISO-179/1EA	≥ 25	33,5	0,1579
Notched Charpy Impact Strength at -30 °C, kJ/m ²	ISO-179/1EA	\geq 4	4,5	0,0903
Heat Deflection Temperature(1.8MPa)	ISO-75-2	\geq 50	57,8	0,8739
Mold Shrink after 48 hour, %	ISO-294	0,75-1,05	0,905	-

The data of tables 1-2 show that the mechanical properties, for example, the tensile modulus of CW452B-UZ is 2246 MPa and it is within the required range of 2100-2700 MPa with a standard deviation of 47.8852.

A study of the thermophysical properties of the CW452U-UZ grade shows that the bending temperature (at a load of 1.8 MPa) is 57.8°C with a standard deviation of 0.8739. This indicator is within the required range (more than 50 °C). Similarly, the trend is observed for all other indicators of the studied compositions.

Tables 3, 4 present the same indicators for the compositions used from the outside of the car, as a bumper.

Table 3					
Properties	Standard	Required index	CEW-670-UZ	Average. square Deviation σ	
Melt Flow Rate, 230/2.16	ISO 1133	33-38	34.1	0,6314	
Density, g/cm ³	ISO1183-A	0.94-0.99	0.983	0,0037	
ASH content, % by mass	ISO3451-1	10-14	13.2	0,3726	
Flexural Modulus, 1 mm/min, MPa	ISO-178	1550-1850	1692	46.7159	
Tensile Modulus, 1 mm/min, MPa	ISO-527-1/2	1550-1850	1692	46,9697	
Tensile Stress at Yield, 50 mm/min, MPa	ISO-527-1/2	≥ 13	18.6	0,4046	
Notched Charpy Impact Strength at +23 °C, kJ/m ²	ISO-179/1EA	≥ 50	52.9	0,1634	
Notched Charpy Impact Strength at -30 °C, kJ/m ²	ISO-179/1EA	≥5	5.7	0,09104	
Heat Deflection Temperature(1.8MPa)	ISO-75-2	≥ +50	54.5	0,7996	
Mold Shrink after 48 hour, %	ISO-294	0.525 -0.675	0.577	-	

The results of laboratory studies of the composition CEW-670-UZ

The results of laboratory studies of the composition CEW 676U-UZ

Table 4					
Properties	Standard	Required index	CEW677U- UZ	Average. square Deviation σ	
Melt Flow Rate, 230/2.16	ISO 1133	33-38	34.5	0,6256	
Density, g/cm ³	ISO1183-A	0.94-0.99	0.984	0,0041	
ASH content, % by mass	ISO3451-1	10-14	13.5	0,3865	
Flexural Modulus, 1 mm/min, MPa	ISO-178	1550-1850	1676	46.8465	
Tensile Modulus, 1 mm/min, MPa	ISO-527-1/2	1550-1850	1705	46,7471	

Table 4

EUROPEAN INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND MANAGEMENT STUDIES

Tensile Stress at Yield, 50 mm/min, MPa	ISO-527-1/2	≥ 13	18.8	0,3896
Notched Charpy Impact Strength at +23 °C, kJ/m ²	ISO-179/1EA	≥ 50	53.2	0,1725
Notched Charpy Impact Strength at -30 °C, kJ/m ²	ISO-179/1EA	≥5	5.7	0,0897
Heat Deflection Temperature(1.8MPa)	ISO-75-2	≥ +50	55	0,8016
Mold Shrink after 48 hour, %	ISO-294	0.525 -0.675	0.580	-

Higher demands are placed on the bumper of a car, for example, high impact resistance. For example, such notched Charpy impact strength is 53.2 kJ/m2 at σ =0.1725, where this value should be greater than 50 kJ/m2.

In general, the data of tables 1-4 indicate that the performance of the resulting compositions meets the requirements of GENERAL MOTORS.

Subsequently, parts were made from these compositions, which were produced in industrial injection machines under standard conditions. Table 5 shows the conditions for obtaining parts in injection machines.

Table 5				
Drying Temperature	C ⁰	80		
Drying Time	hour	2		
Minimum Moisture Content	%	0.01		
Melt Temperature	C ^o	210 ~ 240		
Cylinder Temperature	C ⁰	180 ~ 200		
Rear	C ⁰	190 ~ 210		
Front	C ⁰	210		
Nozzle Temperature	C ⁰	220		
Mold Temperature	C ⁰	40 ~ 70		
Back Pressure	kg/cm2	300 ~ 600		
Screw Speed	rpm	30 ~ 60		

Processing guide of parts in injection machine.

It should be noted that the mode of casting samples does not differ from the mode when using polypropylene compositions used previously.

The results of testing parts from the test samples are presented in tables 6-9. The General Motors standards for these tests do not require the calculation of standard deviations σ . These results are arithmetic mean based on 5 trials.

Parts Test Performance "DUCT-WS Defroster Nozzle"

Table o					
Name of the property	Test methods	Standard spec.	Test results		
Optics / Surface / Color / Appearance	GMW 14162	No visible tracks of cracking or pin holes	No visible tracks of cracking or pin holes		
Chemical resistance	GMW 14334	Rating 1	1		
Fogging	GMW 3235	2mg	1.7		
Odor	GMW 3205	Min. Rating 6	6		
Flammability	GMW 3232	Max 100mm/min	55		
Thermal oxidation	GMW 14651	There are no visible tracks	There are no visible tracks		
Stability		of local discoloration and/or	of local discoloration and/or		
		crumbling	crumbling		

Table 6

Parts Test Performance "RR Door Trim ASM LH/RH"

Table 7					
Name of the property	Test methods	Standard spec.	Test results		
Optics / Surface / Color / Appearance	GMW 14162	ΔL≤0.3	ΔL=0.2		
Chemical resistance	GMW 14334	Rating 1	1		
Fogging	GMW 3235	2mg	1.8		
Odor	GMW 3205	Min. Rating 6	6		
Flammability	GMW 3232	Max 100mm/min	65		
Thermal oxidation	GMW 14651	There are no visible tracks	There are no visible tracks		
Stability		of local discoloration and/or	of local discoloration and/or		
		crumbling	crumbling		
Internal Emissions	GMW 8081	≤ 0.5	0.3		

The results of studies of door trim obtained from the composition show that the optical properties of the RR Door Trim ASM LH/RH parts meet the requirement of the standard and the ΔL of the obtained part is 0.2 with the requirement $\Delta L \le 0.3$. Compliance of the indicators of the obtained parts with the standard is observed in all test methods.

Tables 8 and 9 provide test data for automotive bumpers.

FASCIA-RR BPR Parts Test Performance

Table 8					
Name of the property	Test methods	Standard spec.	Test results		
Optics / Surface / Color / Appearance	GMW 14162	Нет видимых следов растрескивания или штифтовых отверстий	Нет видимых следов растрескивания или штифтовых отверстий		
Chemical resistance	GMW 14334	Rating 1	1		
Fogging	GMW 3235	2mg	1.5		
Odor	GMW 3205	Min. Rating 6	6		

EUROPEAN INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND MANAGEMENT STUDIES

Flammability	GMW 3232	Max 100mm/min	65
Thermal oxidation	GMW 14651	There are no visible tracks	There are no visible tracks
Stability		of local discoloration and/or	of local discoloration
		crumbling	and/or crumbling

Показатели испытания деталей " FASCIA-RR BPR LWR"

Table 9			
Name of the property	Test methods	Standard spec.	Test results
Optics / Surface / Color / Appearance	GMW 14162	ΔL≤0.3	ΔL=0.2
Chemical resistance	GMW 14334	Rating 1	1
Fogging	GMW 3235	2mg	1.6
Odor	GMW 3205	Min. Rating 6	6
Flammability	GMW 3232	Max 100mm/min	69
Thermal oxidation	GMW 14651	There are no visible tracks of	There are no visible tracks
Stability		local discoloration and/or	of local discoloration and/or
		crumbling	crumbling
Internal Emissions	GMW 8081	≤ 0.5	0.3

For example, oxidation resistance in FASCIA-RR BUMPER and FASCIA-RR BUMPER LOWER parts comply with the GMW 14651 standard. A study of such an important indicator as flammability shows that for FASCIA-RR parts BPR LWR is 69 at a maximum allowable 100 mm/min.

CONCLUSIONS

The study of polymer compositions based on polypropylene "Uz-Kor Gas Chemical" showed that the standard deviation of the data obtained is within the requirements of the GM standard.

Recommended modes for obtaining details from these compositions are provided.

Testing of door skins and bumpers from these compositions showed that the parts obtained from this composition have the necessary properties.

Thus, based on the results of the work carried out, it can be concluded that the developed samples of the polypropylene composition based on the product of the LLC "Uz-Kor Gas Chemical" company, and the parts cast on their basis, meet the requirements set by JSC UzAuto Motors.

REFERENCES

- Usmanov I.T., Alimuxamedov M.G., Ayxodjaev B.B., Isaboev S.S. Juraev A.B. [The study of polypropylene of local production]. "Proceedings of the International Conference "Modern Innovations: chemistry and technology of acetylene compounds. Petrochemistry. Catalysis". Tashkent, 2018. p. 158-159.
- **2.** Usmanov I.T., Ayxadjaev B.B., Tadjixodjaeva U.B. [Investigation of thermophysical properties of polypropylene-based compounds]. "Materials of the International Conference "Actual problems of modern science and innovation in the Central Asian region". Tashkent, 2020, p. 653-654

EUROPEAN INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND MANAGEMENT STUDIES

- **3.** Usmanov I.T., Alimuxamedov M.G., Ayxodjaev B.B. [The use of waste for the creation of polypropylene compositions for the automotive industry]. "Tasks of environmental protection in chemistry and chemical technologies". 3-section. Tashkent, 2020, p.146-148
- **4.** Usmanov I.T., Kurbanbekov F.S., Ayxadjaev B.B., Adilov R.I., [The effect of talc on the properties of a compound based on ethylene-propylene copolymer]. "Chemistry and chemical technology". Tashkent, 2021. №3. p. 28-33.
- **5.** Usmanov I.T., Kurbanbekov F.S., Tajixodjaeva U.B., Adilov R.I., [Comparison of the main physical and mechanical parameters of ethylene propylene copolymers of various industries]. Universum. Technical sciences. Moscow. 2021. №12. p. 63-66
- 6. C.A. Harper. Handbook of plastics, elastomers and composites. Mc Grow Hill Handbooks. 210(2004)
- **7.** S. Kagaku, S.Moritomi, T. Watanabe, S.Kanzaki. "Polypropylene Compounds for Automotive Applications Sumitomo Chemical Co., Ltd. Petrochemicals Research Laboratory 2010. pp 1-16.
- **8.** Al-Ali AlMa`adeed M., Krupa I., eds. Poliolefinovyye soyedineniya i materialy [Polyolefin Compounds and Materials] Springer International Ublishing Switzerland 2016. 354 p.