

RESEARCH ARTICLE

Data-Driven Change Control: Algorithmic Risk Evaluation in Financial and Legal Decision Frameworks

Felix R. Thornwell

Department of Information Systems, University of Pretoria, South Africa

VOLUME: Vol.06 Issue02 2026

PAGE: 32-39

Copyright © 2026 European International Journal of Multidisciplinary Research and Management Studies, this is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License. Licensed under Creative Commons License a Creative Commons Attribution 4.0 International License.

Abstract

The growing dependence of large organizations on algorithmically mediated decision systems has profoundly reshaped the architecture of risk governance, particularly within enterprise Change Control Boards, which are responsible for approving, delaying, or rejecting modifications to complex technological and organizational infrastructures. Change Control Boards historically relied on expert judgment, financial forecasting, and legal compliance checks performed by human analysts, but these mechanisms have proven insufficient in environments characterized by high operational velocity, regulatory complexity, and data-intensive risk landscapes. The emergence of predictive artificial intelligence systems capable of integrating financial, legal, and operational data has generated both unprecedented opportunities and serious epistemic challenges. Recent work on predictive risk scoring for Change Advisory Boards has demonstrated that algorithmic systems can anticipate downstream failures and compliance violations with a level of granularity previously unattainable through traditional risk matrices, but these systems also introduce new forms of opacity, bias, and governance uncertainty (Varanasi, 2025). This article develops a comprehensive theoretical and empirical framework for understanding how algorithmic risk scoring models reshape decision-making authority, accountability structures, and organizational rationality within Change Control Boards when financial and legal artificial intelligence systems are integrated into enterprise environments.

Drawing on a synthesis of scholarship in machine learning fairness, legal artificial intelligence, financial risk modeling, and autonomous database management, this study conceptualizes Change Control Boards as socio-technical institutions whose epistemic foundations are being reconfigured by predictive models that quantify uncertainty, assign probabilistic risk values, and recommend intervention strategies. Building on political philosophy perspectives on algorithmic fairness and bias, the article argues that predictive risk scoring does not merely support human decision makers but actively transforms how risk itself is defined, communicated, and legitimized within organizations (Binns, 2018; Angwin et al., 2016).

KEY WORDS

Algorithmic governance, change management, financial risk modeling, legal artificial intelligence, predictive risk scoring, enterprise decision systems

INTRODUCTION

The transformation of organizational decision-making in the digital era has been marked by a progressive shift from

human-centered deliberation toward data-driven and algorithmically mediated governance structures. Nowhere is

this transformation more consequential than in the domain of enterprise change management, where Change Control Boards serve as the institutional nexus through which technical modifications, financial reallocations, and legal compliance decisions converge. Traditionally, these boards have functioned as deliberative bodies that weigh expert opinions, budgetary constraints, regulatory requirements, and operational priorities in order to determine whether proposed changes to information systems, business processes, or organizational structures should be implemented. However, the exponential growth of data volumes, the increasing complexity of regulatory frameworks, and the acceleration of digital innovation have collectively rendered traditional human-centric risk assessment models insufficient for contemporary enterprise environments (Leo et al., 2019; Tian et al., 2024).

Within this context, predictive artificial intelligence systems have emerged as powerful tools for synthesizing heterogeneous data streams into actionable risk assessments. Financial machine learning models, originally developed for credit scoring and fraud detection, now provide sophisticated projections of fiscal exposure associated with organizational change initiatives (Bello, 2023; Dong et al., 2024). Simultaneously, legal artificial intelligence systems based on transformer architectures have demonstrated the capacity to predict judicial outcomes, classify criminal behavior, and model regulatory compliance with remarkable accuracy (Maqsood et al., 2024; Min and Noh, 2025). When these two streams of algorithmic capability converge within the decision-making environment of a Change Control Board, the result is a hybrid epistemic regime in which financial and legal risk are no longer merely estimated but computationally inferred from historical data patterns and probabilistic models.

The most explicit articulation of this emerging paradigm can be found in the recent work on AI-driven Change Advisory Board decision systems, which conceptualizes predictive risk scoring as a means of quantifying the likelihood that a proposed organizational change will produce operational failures, financial losses, or compliance violations (Varanasi, 2025). By integrating project management data, historical incident logs, and regulatory rule sets into a unified predictive model, such systems generate numerical risk scores that purport to represent the overall exposure associated with a given change request. These scores are then presented to

human board members as decision aids, ostensibly enabling more objective, data-driven governance. Yet the epistemological implications of this practice extend far beyond mere efficiency gains. When risk becomes numerically encoded and algorithmically produced, it acquires a form of authority that can overshadow human judgment, subtly shifting the locus of decision-making power from deliberative institutions to computational infrastructures (Binns, 2018).

The scholarly literature on algorithmic decision systems has repeatedly demonstrated that predictive models are not neutral reflections of reality but are shaped by the data on which they are trained, the objectives encoded in their optimization functions, and the institutional contexts in which they are deployed (Angwin et al., 2016; Sarzaeim and Mahmoud, 2024). In the financial domain, machine learning models for credit risk assessment have been shown to reproduce historical patterns of inequality and exclusion, even when explicitly designed to maximize predictive accuracy (Bhatore et al., 2020; Shahbazi and Byun, 2022). In the legal domain, judgment prediction systems and crime classification models have been criticized for embedding normative assumptions about criminality, responsibility, and punishment that may conflict with principles of due process and fairness (Yang, 2023; Greco and Tagarelli, 2024). When such models are incorporated into Change Control Board processes, their implicit value judgments and structural biases become part of the governance fabric of the organization.

The problem, therefore, is not merely whether artificial intelligence can improve the technical quality of change management decisions, but how its integration transforms the very meaning of risk, responsibility, and accountability within enterprise governance. Predictive risk scoring systems promise to reduce uncertainty and enhance foresight, yet they also create new forms of opacity, as the internal logic of complex models may be inaccessible to human decision makers. Moreover, by framing future outcomes in probabilistic terms derived from past data, these systems may constrain organizational imagination and entrench existing power structures, privileging changes that align with historical patterns while discouraging innovation that falls outside established risk profiles (Varanasi, 2025; Binns, 2018).

Despite the growing body of research on financial risk modeling and legal artificial intelligence, there remains a significant gap in the literature concerning their joint

application within enterprise change governance structures. Financial risk studies have largely focused on external market dynamics, creditworthiness, and fraud detection, rather than internal organizational change processes (Gao, 2022; Clintworth et al., 2023). Legal artificial intelligence research, meanwhile, has concentrated on courtroom prediction, crime classification, and regulatory compliance, with little attention to how these systems interact with corporate governance mechanisms (Min and Noh, 2025; Sarzaeim and Mahmoud, 2024). The work on predictive Change Advisory Board systems provides a crucial bridge between these domains, but its implications for institutional theory, organizational ethics, and socio-technical governance have not yet been fully explored (Varanasi, 2025).

This article seeks to address this gap by developing a comprehensive theoretical and methodological framework for analyzing how financial and legal artificial intelligence systems reshape Change Control Board decision-making. By situating predictive risk scoring within the broader traditions of political philosophy, organizational theory, and machine learning research, the study aims to elucidate the conditions under which algorithmic governance can enhance, rather than undermine, democratic accountability and rational deliberation in enterprise contexts. Through an extensive engagement with the provided literature, the article argues that the future of change management lies not in the replacement of human judgment with artificial intelligence, but in the creation of hybrid governance structures that integrate computational foresight with ethical and institutional reflexivity (Varanasi, 2025; Binns, 2018).

METHODOLOGY

The methodological approach adopted in this study is grounded in a qualitative, text-based analytical framework that synthesizes insights from multiple strands of scholarship to construct a coherent understanding of algorithmic risk governance in Change Control Boards. Rather than relying on numerical simulation or experimental data, the methodology draws on a systematic interpretive analysis of the literature on financial risk modeling, legal artificial intelligence, and enterprise information systems, reflecting the epistemological complexity of socio-technical governance structures (Tian et al., 2024; Abdulla and Al-Alawi, 2024). This approach is particularly appropriate for examining predictive risk scoring in change management because the phenomenon under

investigation is not merely technical but deeply institutional, normative, and organizational in character (Varanasi, 2025).

The first methodological pillar consists of a thematic synthesis of financial risk assessment research. Studies on credit risk, financial fraud detection, and market volatility modeling provide a conceptual vocabulary for understanding how machine learning systems quantify uncertainty, evaluate exposure, and optimize decision-making under conditions of incomplete information (Bello, 2023; Song et al., 2014). By examining how financial models translate historical data into probabilistic forecasts, the analysis identifies the epistemic assumptions that underlie predictive risk scoring systems used by Change Control Boards. This includes an exploration of feature selection processes, model training regimes, and performance evaluation metrics, as discussed in the financial risk literature, to elucidate how algorithmic systems prioritize certain variables and outcomes over others (Vaiyapuri et al., 2022; Dong et al., 2024).

The second methodological pillar focuses on legal artificial intelligence and algorithmic judgment prediction. Transformer-based models for crime classification, sentencing prediction, and legal reasoning provide insight into how complex normative frameworks can be encoded into computational architectures (Yang, 2023; Magsood et al., 2024). By analyzing these systems, the study identifies the mechanisms through which legal risk, regulatory compliance, and potential liability are translated into numerical or categorical outputs that can be integrated into enterprise decision processes (Min and Noh, 2025; Greco and Tagarelli, 2024). This allows for a critical examination of how legal norms are operationalized within predictive models and how these operationalizations shape the recommendations presented to Change Control Boards.

The third methodological pillar engages with the literature on algorithmic fairness, bias, and accountability. Political philosophy perspectives on fairness in machine learning provide a normative framework for evaluating the legitimacy of algorithmic decision systems, emphasizing principles such as transparency, equal treatment, and contestability (Binns, 2018). Investigative journalism on algorithmic bias, particularly in high-stakes domains such as criminal justice and credit scoring, offers empirical evidence of how predictive systems can reproduce and amplify existing inequalities (Angwin et al., 2016). These insights are used to interrogate

the ethical and institutional implications of deploying predictive risk scoring in enterprise change governance, where decisions can have far-reaching consequences for employees, customers, and stakeholders (Varanasi, 2025).

The analytical procedure involves a comparative interpretive analysis in which concepts from these three domains are mapped onto the functional requirements and decision processes of Change Control Boards. The study treats Change Control Boards as socio-technical systems in which human actors, organizational norms, and algorithmic tools interact to produce governance outcomes. By tracing how financial and legal risk models are integrated into these systems, the methodology seeks to uncover the implicit assumptions, power dynamics, and normative commitments embedded in predictive risk scoring practices (Leo et al., 2019; Tian et al., 2024).

A key element of the methodology is the use of abductive reasoning, which involves iteratively refining theoretical interpretations in light of empirical and conceptual insights from the literature. For example, the predictive risk scoring framework described in recent change management research is examined through the lens of algorithmic fairness theory to assess its implications for procedural justice and accountability (Varanasi, 2025; Binns, 2018). Similarly, financial risk models are interpreted not only as technical artifacts but as institutional instruments that shape organizational behavior and resource allocation (Bello, 2023; Clintworth et al., 2023). This abductive approach allows the study to generate novel theoretical insights while remaining firmly grounded in established scholarship.

The limitations of this methodology must also be acknowledged. Because the analysis is based on secondary literature rather than primary empirical data, it cannot provide direct causal evidence of how predictive risk scoring systems affect specific Change Control Board decisions. Instead, it offers a theoretically informed interpretation of how such systems are likely to function and what their implications may be, given the documented properties of financial and legal artificial intelligence models (Sarzaeim and Mahmoud, 2024; Abdulla and Al-Alawi, 2024). Nevertheless, this limitation is mitigated by the breadth and depth of the literature reviewed, which encompasses a wide range of empirical studies, theoretical frameworks, and practical applications relevant to algorithmic governance (Varanasi, 2025; Tian et al., 2024).

By adopting this integrative, interpretive methodology, the study aims to produce a nuanced and comprehensive account of algorithmic risk governance in enterprise change management. The approach recognizes that predictive risk scoring is not merely a technical innovation but a transformative force that reshapes organizational epistemology, institutional authority, and ethical responsibility (Varanasi, 2025; Binns, 2018).

RESULTS

The interpretive analysis of the integrated financial and legal artificial intelligence literature reveals a set of consistent patterns that illuminate how predictive risk scoring systems reshape Change Control Board decision-making. One of the most significant findings is that algorithmic risk scores function not merely as informational inputs but as epistemic anchors that frame how board members perceive and evaluate proposed changes (Varanasi, 2025). Financial risk models, by translating complex fiscal uncertainties into single or composite probability values, create a numerical representation of exposure that tends to dominate deliberative processes, even when qualitative factors might suggest alternative interpretations (Bello, 2023; Dong et al., 2024). This anchoring effect has been observed in financial risk management contexts, where decision makers often defer to model outputs even when they conflict with experiential knowledge, because numerical predictions carry an aura of objectivity and scientific authority (Leo et al., 2019).

A parallel dynamic is evident in the integration of legal artificial intelligence into Change Control Boards. Transformer-based models for compliance prediction and legal outcome forecasting generate categorical or probabilistic assessments of regulatory risk that effectively pre-structure the range of acceptable decisions (Min and Noh, 2025; Greco and Tagarelli, 2024). When a proposed change is flagged by a legal risk model as having a high likelihood of triggering regulatory scrutiny or litigation, board members are more likely to reject or postpone the change, regardless of its strategic or innovative potential. This pattern mirrors findings in criminal justice and judicial prediction research, where algorithmic assessments of recidivism or sentencing risk can heavily influence human decision makers, sometimes in ways that perpetuate systemic biases (Yang, 2023; Angwin et al., 2016).

The analysis further indicates that predictive risk scoring systems promote a form of procedural standardization within

Change Control Boards. By providing consistent metrics and thresholds for evaluating risk, these systems reduce variability in decision outcomes and create a semblance of fairness and uniformity (Varanasi, 2025; Bhatore et al., 2020). In financial risk management, such standardization has been associated with improved portfolio stability and reduced exposure to extreme losses, as decisions are guided by quantifiable criteria rather than ad hoc judgments (Clintworth et al., 2023; Gao, 2022). In the context of change management, similar effects are observed, with algorithmic systems enabling boards to process a higher volume of change requests with greater speed and consistency.

However, the results also reveal significant tensions between standardization and contextual sensitivity. Financial and legal artificial intelligence models are trained on historical data that reflect past organizational practices, regulatory environments, and market conditions. As a result, their predictions tend to favor changes that align with established patterns of success and compliance, while penalizing proposals that deviate from historical norms (Vaiyapuri et al., 2022; Shahbazi and Byun, 2022). This conservative bias can limit organizational adaptability and innovation, particularly in rapidly evolving technological landscapes where novel solutions may not resemble past data patterns (Varanasi, 2025; Tian et al., 2024).

Another key finding concerns the distribution of accountability within algorithmically mediated Change Control Boards. When decisions are justified by reference to predictive risk scores, responsibility for outcomes becomes diffused across human and machine actors. Financial risk models and legal compliance systems effectively serve as authoritative advisors whose recommendations carry significant weight, yet they cannot be held accountable in the same way as human decision makers (Binns, 2018; Angwin et al., 2016). This diffusion of responsibility can complicate post hoc evaluations of failed changes or compliance breaches, as it becomes unclear whether blame should be assigned to the board members who approved the change, the data scientists who built the model, or the organization that deployed it (Varanasi, 2025; Sarzaeim and Mahmoud, 2024).

The results also highlight the emergence of new forms of organizational learning mediated by algorithmic systems. Financial risk models continuously update their predictions based on new data, allowing Change Control Boards to refine

their understanding of which types of changes are most likely to succeed or fail (Dong et al., 2024; Song and Wu, 2022). Legal artificial intelligence systems similarly adapt to evolving regulatory environments and case law, providing dynamic assessments of compliance risk (Min and Noh, 2025; Greco and Tagarelli, 2024). This adaptive capacity can enhance organizational resilience, but it also reinforces the influence of algorithmic systems over time, as their predictions become increasingly embedded in institutional memory and governance routines (Varanasi, 2025; Oloruntoba, 2025).

Finally, the analysis reveals that the ethical implications of predictive risk scoring are inseparable from its technical and institutional dimensions. Algorithmic fairness research demonstrates that even highly accurate models can produce unjust outcomes if they are trained on biased data or optimized for narrow performance metrics (Binns, 2018; Angwin et al., 2016). In the context of Change Control Boards, this means that predictive systems may systematically disadvantage certain projects, departments, or stakeholder groups, particularly those associated with higher perceived risk based on historical patterns (Bello, 2023; Bhatore et al., 2020). Without mechanisms for transparency, contestation, and human oversight, these biases can become entrenched, shaping organizational trajectories in ways that are difficult to detect or correct (Varanasi, 2025; Tian et al., 2024).

DISCUSSION

The findings of this study underscore the profound transformation of enterprise governance brought about by the integration of financial and legal artificial intelligence into Change Control Board decision-making. At a theoretical level, predictive risk scoring systems can be understood as epistemic technologies that redefine how organizations perceive and manage uncertainty. By translating complex, multidimensional risks into numerical or categorical outputs, these systems create a new grammar of governance in which future possibilities are evaluated through the lens of probabilistic modeling rather than deliberative judgment (Varanasi, 2025; Binns, 2018). This shift has far-reaching implications for organizational rationality, institutional legitimacy, and ethical accountability.

From the perspective of organizational theory, Change Control Boards have traditionally functioned as arenas of negotiated order, where diverse stakeholders bring competing priorities and interpretive frameworks to bear on decisions about

change. Financial managers emphasize budgetary constraints and return on investment, legal advisors focus on compliance and liability, and technical experts assess feasibility and performance. The introduction of predictive risk scoring alters this dynamic by providing a seemingly objective synthesis of these perspectives, encapsulated in a single or composite risk metric (Dong et al., 2024; Min and Noh, 2025). While this synthesis can facilitate consensus and streamline decision-making, it also risks suppressing dissenting viewpoints and marginalizing qualitative insights that cannot be easily quantified (Varanasi, 2025; Greco and Tagarelli, 2024).

Political philosophy perspectives on algorithmic fairness further illuminate the normative stakes of this transformation. Binns (2018) argues that fairness in machine learning cannot be reduced to statistical parity or error rate optimization, but must be grounded in principles of justice, accountability, and respect for persons. When predictive risk scores are used to govern organizational change, they effectively allocate opportunities and constraints across projects and stakeholders. Decisions about which changes to approve, delay, or reject shape the distribution of resources, the direction of innovation, and the exposure of different groups to risk. If these decisions are driven by models that encode historical biases or opaque optimization criteria, the resulting governance regime may violate fundamental principles of fairness and procedural justice (Angwin et al., 2016; Varanasi, 2025).

The legal artificial intelligence literature adds another layer of complexity to this analysis. Transformer-based models for judgment prediction and compliance assessment demonstrate that legal norms can be operationalized in computational form, but they also reveal the interpretive flexibility and contextual sensitivity inherent in legal reasoning (Greco and Tagarelli, 2024; Yang, 2023). When such models are deployed in Change Control Boards, they translate the fluid and contested domain of law into fixed risk categories and probabilities. This translation can improve consistency and foresight, but it may also obscure the normative and interpretive dimensions of legal decision-making, reducing complex regulatory questions to technical risk scores (Min and Noh, 2025; Sarzaeim and Mahmoud, 2024).

The financial risk management literature provides a cautionary tale about the limits of model-driven governance. While machine learning models have enhanced the accuracy of

credit scoring, fraud detection, and market forecasting, they have also contributed to systemic vulnerabilities when their assumptions and limitations are ignored (Bello, 2023; Gao, 2022). The global financial crises of the past have demonstrated that overreliance on quantitative models can lead to a false sense of security, masking underlying risks and encouraging excessive risk-taking. In the context of Change Control Boards, a similar danger arises if predictive risk scores are treated as definitive rather than provisional assessments of uncertainty (Varanasi, 2025; Clintworth et al., 2023).

One of the most critical issues raised by the integration of algorithmic risk scoring is the question of accountability. In traditional governance structures, Change Control Boards are accountable for their decisions, and individual members can be held responsible for failures or misconduct. When decisions are justified by reference to predictive models, however, accountability becomes distributed across a network of human and machine actors. Data scientists design the models, IT departments maintain the infrastructure, and board members interpret the outputs. This diffusion of responsibility can undermine the moral and legal foundations of governance, as it becomes difficult to assign blame or demand redress when algorithmically informed decisions lead to harm (Binns, 2018; Angwin et al., 2016; Varanasi, 2025).

To address these challenges, scholars and practitioners have proposed a range of governance mechanisms aimed at enhancing the transparency, interpretability, and contestability of algorithmic systems. In the financial domain, regulatory frameworks increasingly require institutions to explain how their models produce decisions and to demonstrate that they do not discriminate against protected groups (Bhatore et al., 2020; Abdulla and Al-Alawi, 2024). In the legal domain, debates about explainable artificial intelligence emphasize the need for models that can provide reasons for their predictions, rather than merely outputs (Greco and Tagarelli, 2024; Min and Noh, 2025). Applying these principles to Change Control Boards would entail embedding predictive risk scoring within a broader institutional framework that includes human oversight, procedural safeguards, and avenues for appeal and review (Varanasi, 2025; Tian et al., 2024).

The discussion also points to the importance of organizational culture in shaping how algorithmic systems are used and interpreted. In organizations that valorize data-driven

decision-making and efficiency, predictive risk scores may quickly become the dominant basis for governance, marginalizing qualitative and ethical considerations. In contrast, organizations that emphasize deliberation, stakeholder engagement, and ethical responsibility may use algorithmic tools as one input among many, subjecting their outputs to critical scrutiny and contextual interpretation (Leo et al., 2019; Oloruntoba, 2025). The design and deployment of predictive risk scoring systems should therefore be aligned with the values and governance norms of the organization, rather than treated as purely technical solutions (Varanasi, 2025; Binns, 2018).

Looking toward the future, the convergence of financial, legal, and operational artificial intelligence within enterprise governance structures raises profound questions about the nature of organizational agency. As predictive models become more accurate and more deeply embedded in decision processes, they may begin to shape not only how organizations respond to change but which changes are even conceived as possible. By privileging historically grounded risk profiles, algorithmic systems can subtly steer organizations toward incremental, low-risk modifications and away from transformative innovations that lack precedent (Tian et al., 2024; Vaiyapuri et al., 2022). This path dependence may enhance stability but at the cost of adaptability and long-term competitiveness (Varanasi, 2025; Clintworth et al., 2023).

At the same time, the adaptive learning capabilities of modern artificial intelligence systems offer the potential for more reflexive and responsive governance. By continuously incorporating new data, predictive models can update their assessments of risk and opportunity, allowing Change Control Boards to learn from past successes and failures (Dong et al., 2024; Song and Wu, 2022). If combined with transparent reporting and human interpretive oversight, this adaptive capacity could support a more dynamic and evidence-based approach to change management, balancing innovation with prudence (Varanasi, 2025; Abdulla and Al-Alawi, 2024).

In sum, the integration of predictive risk scoring into Change Control Board governance represents a pivotal moment in the evolution of enterprise decision-making. It offers the promise of enhanced foresight, consistency, and efficiency, but it also poses significant risks to fairness, accountability, and institutional legitimacy. The challenge for organizations is not whether to use artificial intelligence in change management,

but how to design and govern these systems in ways that respect human values, promote democratic accountability, and support sustainable innovation (Varanasi, 2025; Binns, 2018).

CONCLUSION

The analysis presented in this article demonstrates that predictive risk scoring systems, when deployed within Change Control Boards, fundamentally reshape the epistemic, institutional, and ethical landscape of enterprise governance. By integrating financial and legal artificial intelligence models into the heart of change management processes, organizations gain unprecedented analytical capabilities, enabling them to anticipate potential failures, financial losses, and compliance breaches with a level of precision unattainable through traditional methods (Dong et al., 2024; Min and Noh, 2025). Yet these gains come with significant challenges, as algorithmic systems introduce new forms of opacity, bias, and distributed accountability that complicate the governance of organizational change (Binns, 2018; Angwin et al., 2016).

The work on AI-driven Change Advisory Board decision systems provides a crucial conceptual foundation for understanding this transformation, highlighting both the technical potential and the institutional implications of predictive risk scoring in change management (Varanasi, 2025). Building on this foundation, the present study has shown that algorithmic risk scores function not merely as decision aids but as quasi-normative instruments that shape how organizations define, perceive, and respond to uncertainty. To ensure that these instruments serve the public and organizational good, they must be embedded within governance frameworks that prioritize transparency, contestability, and ethical responsibility. Only by recognizing the socio-technical nature of algorithmic governance can organizations harness the power of artificial intelligence while safeguarding the values that underlie legitimate and sustainable enterprise decision-making (Varanasi, 2025; Tian et al., 2024).

REFERENCES

1. Maqsood, A., Ul-Hasan, A., and Shafait, F. Transformer-Based Architecture for Judgment Prediction. Springer Lecture Notes in AI.
2. Tian, X., Tian, Z., Khatib, S. F., and Wang, Y. Machine learning in internet financial risk management: A

systematic literature review. *Plos one*, 19(4), e0300195.

3. Bello, O. A. Machine learning algorithms for credit risk assessment: an economic and financial analysis. *International Journal of Management*, 10(1), 109-133.

4. Greco, C. M., and Tagarelli, A. Bringing order into the realm of Transformerbased language models for artificial intelligence and law. *Artificial Intelligence and Law*.

5. Sarzaeim, P., and Mahmoud, Q. H. Experimental analysis of large language models in crime classification and prediction. *ACM Proceedings on AI and Law*.

6. Varanasi, S. R. AI for CAB Decisions: Predictive Risk Scoring in Change Management. *International Research Journal of Advanced Engineering and Technology*, 2(06), 16-22. <https://doi.org/10.55640/irjaet-v02i06-03>

7. Angwin, J., Larson, J., Mattu, S., and Kirchner, L. Machine bias. *ProPublica*.

8. Clintworth, M., Lyridis, D., and Boulougouris, E. Financial risk assessment in shipping: a holistic machine learning based methodology. *Maritime Economics and Logistics*, 25(1), 90-121.

9. Gao, B. The use of machine learning combined with data mining technology in financial risk prevention. *Computational economics*, 59(4), 1385-1405.

10. Min, H., and Noh, B. TRACS-LLM: LLM-based traffic accident criminal sentencing prediction. *Artificial Intelligence and Law*.

11. Dong, H., Liu, R., and Tham, A. W. Accuracy comparison between five machine learning algorithms for financial risk evaluation. *Journal of Risk and Financial Management*, 17(2), 50.

12. Oloruntoba, O. AI-Driven autonomous database management: Self-tuning, predictive query optimization, and intelligent indexing in enterprise it environments. *World Journal of Advanced Research and Reviews*, 25(2), 1558-1580.

13. Binns, R. Fairness in machine learning: Lessons from political philosophy. *Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency*, 149–159.

14. Song, Y., and Wu, R. The impact of financial enterprises excessive financialization risk assessment for risk control based on data mining and machine learning. *Computational Economics*, 60(4), 1245-1267.

15. Yang, C. TransCrimeNet: A Transformer-Based Model for Text-Based Crime Prediction in Criminal Networks. *arXiv preprint arXiv:2311.09529*.

16. Bhatore, S., Mohan, L., and Reddy, Y. R. Machine learning techniques for credit risk evaluation: a systematic literature review. *Journal of Banking and Financial Technology*, 4(1), 111-138.

17. Vaiyapuri, T., Priyadarshini, K., Hemlathadhevi, A., Dhamodaran, M., Dutta, A. K., Pustokhina, I. V., and Pustokhin, D. A. Intelligent Feature Selection with Deep Learning Based Financial Risk Assessment Model. *Computers, Materials and Continua*, 72(2).

18. Song, X. P., Hu, Z. H., Du, J. G., and Sheng, Z. H. Application of machine learning methods to risk assessment of financial statement fraud: Evidence from China. *Journal of Forecasting*, 33(8), 611-626.

19. Leo, M., Sharma, S., and Maddulety, K. Machine learning in banking risk management: A literature review. *Risks*, 7(1), 29.

20. Abdulla, Y. Y., and Al-Alawi, A. I. Advances in Machine Learning for Financial Risk Management: A Systematic Literature Review. In *2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems*, 531-535.

21. Shahbazi, Z., and Byun, Y. C. Machine learning-based analysis of cryptocurrency market financial risk management. *Ieee access*, 10, 37848-37856.

22. OLORUNTOBA, O. Generative AI for Creative Data Management: Optimizing Database Systems in the Creative Industry.