



OPEN ACCESS

SUBMITTED 01 October 2025

ACCEPTED 15 October 2025

PUBLISHED 31 October 2025

VOLUME Vol.05 Issue10 2025

COPYRIGHT

© 2025 Original content from this work may be used under the terms of the creative commons attributes 4.0 License.

# Explainable Artificial Intelligence–Driven Decision Support Systems for Customer Retention, Risk Management, and Trustworthy Managerial Intelligence

Dr. Lucas Fernández

Department of Information Systems and Analytics, Universidad de Buenos Aires, Argentina

**Abstract** Explainable Artificial Intelligence (XAI) has emerged as a critical paradigm in the evolution of intelligent decision support systems, particularly in high-stakes domains where trust, accountability, and transparency are essential. As machine learning models become increasingly complex and pervasive across sectors such as telecommunications, healthcare, finance, and service management, their opacity poses significant challenges for organizational adoption, regulatory compliance, and user confidence. This research presents a comprehensive and theory-driven examination of XAI-enabled decision support systems, focusing on their role in customer retention and churn prediction, managerial decision-making, and risk management. Drawing strictly on contemporary scholarly literature, the study integrates perspectives from explainable machine learning, human–computer interaction, customer participation risk theory, and intelligent decision support frameworks. The article advances a unified conceptual understanding of how explainability enhances trust, improves cognitive alignment between humans and AI systems, and supports more informed, ethical, and defensible decisions. Through an extensive qualitative methodological synthesis, the research analyzes explainability techniques such as feature attribution, model transparency, and relevance-based explanations, alongside their implications for system usability, organizational learning, and strategic governance. The findings reveal that explainability does not merely function as a technical add-on but operates as a socio-

technical enabler that reshapes how organizations perceive, evaluate, and rely on AI-driven insights. Furthermore, the study identifies persistent challenges, including explanation overload, contextual misinterpretation, and trade-offs between accuracy and interpretability. By articulating theoretical contributions, managerial implications, and future research directions, this article positions XAI as a foundational pillar for the next generation of trustworthy, human-centered decision support systems.

**Keywords:** Explainable Artificial Intelligence, Decision Support Systems, Customer Retention, Trust in AI, Machine Learning Transparency, Managerial Decision-Making

## Introduction

The rapid advancement of artificial intelligence and machine learning has fundamentally transformed how organizations collect data, generate insights, and make strategic decisions. Across industries, predictive models are increasingly embedded into decision support systems to automate analysis, forecast outcomes, and optimize operational performance. In telecommunications, for instance, machine learning techniques are widely deployed to predict customer churn and enhance retention strategies by identifying behavioral patterns and risk indicators embedded within massive datasets (Adeniran et al., 2024). Similarly, in healthcare, finance, and service management, intelligent systems support diagnostic decisions, credit risk evaluations, and customer participation management, often in contexts characterized by uncertainty, ethical sensitivity, and regulatory oversight (Issitt et al., 2022; Damali et al., 2021).

Despite these advances, a critical paradox has emerged. As machine learning models become more powerful, they also become less interpretable. Deep neural networks, ensemble methods, and complex nonlinear algorithms often operate as “black boxes,” producing predictions without offering human-understandable reasoning. This opacity undermines trust, limits accountability, and constrains organizational learning, particularly when decisions have significant consequences for individuals or institutions (Adadi & Berrada, 2018; Akhai, 2023).

Managers and domain experts may hesitate to rely on AI recommendations if they cannot understand how or why a particular outcome was generated, even when predictive accuracy is high.

Explainable Artificial Intelligence (XAI) has emerged as a response to this challenge. XAI seeks to design AI systems whose decisions, predictions, and internal logic can be understood, interpreted, and critically evaluated by human users. Rather than viewing explainability as a purely technical property, contemporary research frames it as a multidimensional construct encompassing transparency, interpretability, usability, and cognitive alignment (Arrieta et al., 2020; Dwivedi et al., 2023). Explainability enables users to interrogate model behavior, assess reliability, detect bias, and align AI outputs with organizational goals and ethical standards.

The growing interest in XAI is particularly evident in decision support systems, where AI-generated insights are intended to augment rather than replace human judgment. Explainable decision support systems bridge the gap between advanced analytics and managerial reasoning by transforming algorithmic outputs into actionable, intelligible knowledge (Ali et al., 2023; Delgado & Rossi, 2024). In customer-centric domains such as telecommunications and service management, explainability enhances the ability of organizations to justify retention strategies, personalize interventions, and manage customer participation risks in a transparent and defensible manner (Adeniran et al., 2024; Damali et al., 2021).

However, despite a growing body of research on XAI techniques and applications, significant gaps remain in understanding how explainability functions as an integrative mechanism across technical, cognitive, and organizational dimensions. Much of the existing literature focuses either on algorithmic methods for explanation or on isolated application domains, without sufficiently theorizing the broader implications for trust, decision quality, and system adoption. Moreover, there is limited synthesis connecting explainable machine learning with decision support theory, human-computer interaction principles, and managerial risk assessment frameworks.

This article addresses these gaps by developing a

comprehensive, theory-driven analysis of XAI-enabled decision support systems, grounded strictly in contemporary scholarly references. The study explores how explainability reshapes customer retention analytics, managerial decision-making, and risk governance, while critically examining its limitations and trade-offs. By integrating insights from machine learning, service management, and cognitive science, the research advances a holistic perspective on explainable intelligence as a cornerstone of trustworthy, human-centered AI.

## **Methodology**

This research adopts a qualitative, theory-synthesis methodology grounded in systematic conceptual analysis of peer-reviewed academic literature. Rather than employing empirical experimentation or quantitative modeling, the study focuses on deep interpretive integration of existing research to construct a coherent theoretical framework for explainable AI-driven decision support systems. This approach is particularly suitable given the study's objective of advancing conceptual clarity, identifying theoretical linkages, and articulating nuanced implications across multiple domains of application.

The primary data source for this research consists exclusively of the references provided, which encompass a diverse yet thematically coherent body of work spanning explainable artificial intelligence, machine learning interpretability, intelligent decision support systems, customer retention analytics, and risk management. These sources include survey articles, conceptual frameworks, empirical comparative studies, and domain-specific applications published in reputable journals and conference proceedings. The temporal range of the references, from foundational works such as Adadi and Berrada (2018) to recent contributions in 2024 and 2025, enables both historical grounding and contemporary relevance.

The analytical process involved multiple iterative stages. First, each reference was examined in depth to identify its core theoretical constructs, assumptions, and contributions. Particular attention was paid to how each study conceptualized explainability, trust, decision-making, and user interaction with AI systems.

Second, thematic coding was applied to group recurring concepts such as transparency, interpretability techniques, cognitive load, user trust, customer behavior modeling, and managerial accountability. This thematic organization facilitated cross-comparison and synthesis across different application domains.

Third, the study engaged in integrative reasoning, linking technical XAI mechanisms—such as feature attribution methods, relevance-based explanations, and interpretable model structures—to higher-level organizational and cognitive outcomes. For example, insights from SHAP and LIME comparative analyses (Hasan, 2023) were connected to discussions of managerial trust and decision justification (Delgado & Rossi, 2024). Similarly, research on customer participation risk management (Damali et al., 2021) was integrated with explainable churn prediction models in telecommunications (Adeniran et al., 2024).

Throughout the methodology, reflexive analysis was employed to critically examine tensions and counterarguments within the literature. This included exploring trade-offs between model accuracy and interpretability, potential risks of oversimplified explanations, and the possibility of explanation-induced bias or overconfidence (Cheng et al., 2025; Haque, 2025). Rather than resolving these tensions prematurely, the study treats them as productive areas for theoretical development and future research.

By synthesizing insights across disciplines and methodological traditions, this qualitative approach enables the construction of a comprehensive and publication-ready narrative that advances understanding of explainable AI as a socio-technical system rather than a narrowly defined computational tool.

## **Results**

The synthesis of the reviewed literature reveals several interrelated findings that collectively illuminate the transformative role of explainable artificial intelligence in decision support systems. These findings are not presented as statistical outcomes but as theoretically grounded patterns emerging across multiple domains and methodological perspectives.

One central finding is that explainability consistently enhances trust in AI-driven decision support systems, but this trust is conditional rather than absolute. Studies in healthcare, telecommunications, and managerial decision-making demonstrate that users are more willing to rely on AI recommendations when they can understand the rationale behind predictions (Issitt et al., 2022; Adeniran et al., 2024; Delgado & Rossi, 2024). However, trust is mediated by factors such as domain expertise, explanation clarity, and contextual relevance. Cheng et al. (2025) show that while explainable clinical decision support systems improve diagnostic confidence, poorly designed explanations can increase cognitive load and reduce performance.

Another key finding concerns the role of explainability in customer retention and churn prediction. Machine learning models used in telecommunications often achieve high predictive accuracy but face resistance from decision-makers who must justify retention actions to stakeholders and regulators. By incorporating explainable techniques, such as feature importance visualization and local explanation methods, organizations can translate predictive outputs into actionable insights about customer behavior, enabling targeted interventions that are both effective and defensible (Adeniran et al., 2024). This aligns with broader service management research emphasizing transparency in customer participation risk management (Damali et al., 2021).

The literature also highlights the importance of explanation type and granularity. Global explanations, which describe overall model behavior, support strategic understanding and policy formulation, while local explanations, which clarify individual predictions, are more relevant for operational decision-making and case-by-case justification (Arrieta et al., 2020; Hasan, 2023). The effectiveness of explainability thus depends on aligning explanation mechanisms with user goals and decision contexts.

Furthermore, findings indicate that explainability contributes to organizational learning and governance. By making AI reasoning explicit, decision support systems enable managers to reflect on underlying assumptions, detect data biases, and refine decision

rules over time (Ali et al., 2023; Akhai, 2024). This reflexive capacity supports more adaptive and resilient decision-making structures, particularly in dynamic environments characterized by uncertainty and customer heterogeneity.

At the same time, the results reveal persistent challenges. Explainability does not automatically guarantee correctness or fairness. There is a risk that users may over-trust explanations without critically evaluating their validity, especially when explanations are simplified or framed persuasively (Haque, 2025). Additionally, highly complex models may resist meaningful explanation, leading to superficial transparency that satisfies formal requirements but fails to support genuine understanding (Adadi & Berrada, 2018).

Collectively, these findings suggest that explainable AI functions as an enabling infrastructure for trustworthy decision support, but its effectiveness depends on careful design, contextual sensitivity, and ongoing evaluation.

## Discussion

The findings of this research underscore the necessity of rethinking explainable artificial intelligence not merely as a set of technical tools but as a foundational component of socio-technical decision support systems. One of the most significant theoretical implications is the repositioning of explainability as a relational construct. Trust in AI does not arise solely from model performance or explanation availability; rather, it emerges from the interaction between system design, user cognition, organizational norms, and contextual demands (Cheng et al., 2025; Dwivedi et al., 2023).

In customer retention and churn prediction, explainability reshapes how organizations conceptualize customer behavior. Traditional predictive models often reduce customers to probability scores, abstracting away the underlying drivers of dissatisfaction or loyalty. Explainable models reintroduce narrative and causality into analytics, enabling managers to understand not only who is likely to churn but why. This shift aligns with service management theories emphasizing customer participation and relational risk, where transparency and mutual understanding are central to sustainable

engagement (Damali et al., 2021).

From a managerial decision-making perspective, explainable decision support systems challenge the dichotomy between human intuition and algorithmic rationality. Rather than replacing managerial judgment, XAI-enabled systems act as cognitive partners, offering structured reasoning that can be interrogated, contested, and refined (Ali et al., 2023; Delgado & Rossi, 2024). This collaborative model supports more accountable and ethically grounded decisions, particularly in regulated environments such as healthcare and finance.

However, the discussion must also address limitations and counterarguments. One concern is the potential for explanation overload, where excessive or overly detailed explanations overwhelm users and hinder decision-making. Research in human-computer interaction highlights the importance of tailoring explanations to user expertise and task complexity (Dolatabadi et al., 2024). Another limitation involves the risk of false transparency, where explanations create an illusion of understanding without accurately reflecting model behavior (Akhai, 2023).

Future research should therefore focus on adaptive explainability, where systems dynamically adjust explanation depth and format based on user needs and situational context. There is also a need for empirical studies examining long-term organizational outcomes of XAI adoption, including its impact on learning, innovation, and ethical governance. Integrating explainability with participatory design principles may further enhance system acceptance and effectiveness.

## **Conclusion**

This article has presented an extensive theoretical analysis of explainable artificial intelligence as a critical enabler of trustworthy, effective, and human-centered decision support systems. Drawing strictly on contemporary scholarly literature, the study has demonstrated that explainability enhances trust, supports informed decision-making, and strengthens organizational accountability across domains such as telecommunications, healthcare, and service management. At the same time, it has highlighted the nuanced challenges and trade-offs inherent in

designing and deploying explainable systems.

Ultimately, explainable AI should be understood not as an optional feature but as a core design philosophy that aligns technological innovation with human values and organizational goals. As AI continues to shape decision-making in increasingly consequential ways, the integration of robust, context-sensitive explainability will be essential for realizing its full potential while safeguarding trust, fairness, and responsibility.

## **References**

1. Adeniran, I.A., Efunniyi, C.P., Osundare, O.S., Abhulimen, A.O. and OneAdvanced, U. (2024). Implementing machine learning techniques for customer retention and churn prediction in telecommunications. *Computer Science & IT Research Journal*, 5(8).
2. Adadi, A. and Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). *IEEE Access*, 6, 52138–52160.
3. Adhikari, T. (2023). Towards Explainable AI: Interpretable Models and Feature Attribution. *SSRN Electronic Journal*.
4. Adom, I. and Mahmoud, M.N. (2024). RB-XAI: Relevance-Based Explainable AI for Traffic Detection in Autonomous Systems. *SoutheastCon 2024*, 1358–1367.
5. Akhai, S. (2023). From Black Boxes to Transparent Machines: The Quest for Explainable AI. *SSRN Electronic Journal*.
6. Akhai, S. (2024). Towards Trustworthy and Reliable AI. *Explainable Artificial Intelligence (XAI) in Healthcare*, 89–99.
7. Ali, R., Hussain, A., Nazir, S., Khan, S. and Khan, H.U. (2023). Intelligent decision support systems—an analysis of machine learning and multicriteria decision-making methods. *Applied Sciences*, 13(22), 12426.
8. Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A. and Herrera, F. (2020). Explainable artificial intelligence (XAI):

Concepts, taxonomies, opportunities and challenges toward responsible AI. *Information Fusion*, 58, 82–115.

9. Cheng, Y., Li, X. and Wang, Z. (2025). Explainability and AI Confidence in Clinical Decision Support Systems: Effects on Trust, Diagnostic Performance, and Cognitive Load. *arXiv preprint arXiv:2501.16693*.

10. Damali, U., Secchi, E., Tax, S.S. and McCutcheon, D. (2021). Customer participation risk management: conceptual model and managerial assessment tool. *Journal of Service Management*, 32(1), 27–51.

11. Delgado, M. and Rossi, P. (2024). Extending application of explainable artificial intelligence for managerial decision-making. *Annals of Operations Research*.

12. Dolatabadi, S.H., Gatial, E., Budinská, I. and Balogh, Z. (2024). Integrating human-computer interaction principles in user-centered dashboard design: Insights from maintenance management. *Proceedings of the IEEE 28th International Conference on Intelligent Engineering Systems*, 219–224.

13. Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R., Patel, P., Qian, B., Wen, Z., Shah, T., Morgan, G. and Ranjan, R. (2023). Explainable AI (XAI): Core ideas, techniques, and solutions. *ACM Computing Surveys*, 55(9), 1–33.

14. Haque, A.K.M. (2025). Explainable artificial intelligence (XAI): making AI understandable for end users.

15. Hasan, M.M. (2023). Understanding model predictions: a comparative analysis of SHAP and LIME on various ML algorithms. *Journal of Scientific and Technological Research*, 5(1), 17–26.

16. Issitt, R.W., Cortina-Borja, M., Bryant, W., Bowyer, S., Taylor, A.M. and Sebire, N. (2022). Classification performance of neural networks versus logistic regression models: evidence from healthcare practice. *Cureus*, 14(2).

17. Nayak, S. (2022). Harnessing Explainable AI (XAI) For Transparency In Credit Scoring And Risk Management In Fintech. *International Journal of Applied Engineering and Technology*, 4, 214–236.

18. Thomas, G.A.S., Muthukaruppasamy, S., Nandha Gopal, J., Sudha, G. and Saravanan, K. (2024). Unleashing the Power of XAI (Explainable Artificial Intelligence). *Explainable AI for Sustainable Development*, 303–316.