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Abstract: This article will present a technique for 
traversing a graph. Several questions arise here. For 
example, can we walk along the edges of a graph 
starting from a vertex and returning to it by visiting each 
edge of the graph exactly once? Similarly, can we walk 
along the edges of a graph starting from a vertex and 
returning to it while visiting each vertex of the graph 
exactly once? As can be seen, both questions are 
identical, but what is important is to consider two 
circuits that answer the above questions, namely the 
Euler circuit and the Hamilton circuit. Solving the 
Hamilton circuit for most graphs is very difficult. In this 
section, we will examine these questions and discuss the 
difficulty of solving them. 

 

Keywords: Graph, Euler’s Path, Hamilton’s Paths, 
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Introduction: To better understand the path, we must 
first have a brief introduction to graphs first. Graphs are 
discrete structures consisting of vertices and the edges 
that connect these vertices. There are different types of 
graphs, depending on whether the edges are directed, 
whether multiple edges can connect a pair of vertices, 
and whether the graphs are cyclic. Traversing on the 
graph edges and crossing the vertices a path are 
created. Given the importance of these two topics, Euler 
and Hamilton paths are one of the fundamental 
concepts in graph theory, a branch of mathematics that 
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studies the properties and applications of graphs. We 
will give examples to show how graphs can be used as 
a model in the context of using graph models to 
determine whether it is possible to walk all the streets 
of a city without going down a street twice, or whether 
a circuit can be implemented on a flat circuit domain. 

Graphs with weights assigned to their edges can be 
used to solve problems such as finding the shortest 
path between two cities in a network. We will also 
examine the complexity of Euler and Hamilton paths. 
Now we start discussion on Euler and Hamilton’ path.  

Paths: Before we consider the Euler and Hamilton 
paths, let us explain the path itself. Suppose we have a 
city, we know that a city has a certain area, we consider 
the vertices of this area as cities and the edges as 
roads, a path is a distance that starts in a city, passes 
through several cities, and ends in a city [3].   

In [1] a path ∝ in a graph G, with origin v0 and endpoint 
vn, is an alternating sequence of n + 1 vertices and n 
edges of the form  

v0, e1, v1, e2, v2. . . en – 1, vn – 1, en, vn 

Where each edge ei is located at the vertices vi – 1 and 
vi. And the n edges of a graph are called path lengths. 

We show the path ∝ by a sequence of its edges ∝ = (e1, 
e2. . . en – 1, en ) or by a sequence of its vertices  ∝ = 
(v0, v1, v2, . . . , , vn – 1, vn) [2]. 

Theorem: There is a path from a vertex u to a vertex v 
if and only if there exists a simple path from u to v [4]. 
For more discussion, we describe what a simple path 
is. 

Simple path: A path ∝ = (v0, v1, v2, . . . , , vn – 1, vn) is 
simple if all its vertices are distinct. Or a path is called 
simple if none of its edges is repeated [1, 6,7 ]. 

The path ∝ = (v0, v1, v2, . . . , , vn – 1, vn) is closed if v0 
= vn, i.e. its origin (∝) is equal to the limit (∝). A path is 
called a circuit if the path is closed and all vertices except 
v0 = vn are distinct. A circuit of length k is called a k-
circuit. 

 Note: A circuit in a graph G must have length equal to 
or greater than three [8]. 

In general, as it is briefly stated in [6], If u and v are 
vertices in the graph G, then the distance between u and 
v is represented by d(u, v). 

Euler’s Paths and Circuits: Now we are going to show 
how Euler path look like, for a better understanding we 
are going to describe with a historical representation of 
the path. 

Here as it is mentioned in [6], the subject of graph 
theory began in the year 1736 when the great 
mathematician Leonhard Euler published a paper giving 
the solution to its puzzle i.e. Konigsberg Bridges. 

Konigsberg Bridges: Here we consider a city, which is 
the city of Konigsberg, which in the 18th century in East 
Prussia consisted of two islands and seven bridges. Here 
a question arises as follows: a person wants to walk 
through the city and, starting from any point in the city, 
cross all seven bridges but do not cross any bridge twice 
and reach another point in the city? The people of 
Konigsberg wrote a letter to the famous Swiss 
mathematician Euler about this question. In 1376, Euler 
proved that such a walk is impossible. 

He replaced the islands and the two sides of the river 
with points and the bridges with curves and showed it 
in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure: Graphical representation of Euler Path 

 

 

 

 

 



European International Journal of Multidisciplinary Research 
and Management Studies 

15 https://eipublication.com/index.php/eijmrms 

European International Journal of Multidisciplinary Research and Management Studies 
 

 

 
 

Figure: Bridges of Konigsberg 1786 

It is easy to see that such a tour of the city of 
Konigsberg is possible only if the multigraph of form (b) 
is traversable. But this multigraph has four odd vertices 
and is therefore non-traversable. Thus, a pedestrian 
cannot circumnavigate the city by crossing each bridge 
only once [2, 6].  

• A graph has an Euler circuit if and only if the 
degree of every vertex is even. 

• A graph has an Euler path if and only if there 
are at most two vertices with odd degree 

Since the bridges of Konigsberg graph has all four 
vertices with odd degree, there is no Euler path 
through the graph. Thus there is no way for the 
townspeople to cross every bridge exactly once [5]. 

Theorem (Konigsberg Bridge Theorem) (Euler, 1736): 

Let G be a connected graph. G has 

An Eulerian circuit if and only if each vertex is even. 

Definition: As stated in [2] An Euler circuit in a graph G 
is a simple circuit that contains every edge of G. An Euler 
path in a graph G is a simple path that contains every 
edge of G. In other words, a graph (multiple graph) G is 
an Eulerian graph if a traversable closed path has an 
Eulerian pat [7]. An Euler circuit is an Euler path which 
starts and stops at the same vertex [5]. 

More example of differential equation; 

Example1:   In this example, we look at the following 
figures and check which of the undirected graphs in 
Figures have an Euler circuit? And which of the graphs 
that are not Euler circuits have an Euler path? 

 

 

 

 

 

 

 

 

 

 

 

 
Figure undirected graph

Solution: Graph G1 has an Euler circuit, i.e., a, e, c, d, 
e, b, a. neither graph G2 nor G3 has an Euler circuit. 
However, G3 has an Euler path, i.e., a, c, d, e, b, d, a, b.  

G2 does not have an Euler path. 

Example2 In this example we consider directed graph. 

Which of the directed graphs in bellow Figure have an 
Euler circuit? Of those that do not, which have an Euler 
path? 
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Figure: Directed graph 

Solution: Graph H2 has an Euler circuit, i.e., a, g, c, b, g,  

e, d, f, a. Neither H1 nor H3 has an Euler circuit. H3 has 
an Euler path, i.e., c, a, b, c, d, b, but H1 does not. 

Euler's Theorem: A finite connected graph G is Eulerian 
if and only if the degree of every vertex is even [2].  

Now we will discuss the issue of which criterion we 
should consider to know in advance whether a graph is 
an Euler circuit, path or not. There are simple criteria 
for determining whether a multigraph has an Euler 
circuit or an Euler path. Euler discovered them when 
he solved the famous Konigsberg Bridge problem. We 
assume that all graphs discussed in this section have a 
finite number of vertices and edges. 

What can we say if a connected multigraph has an 
Euler circuit? What we can show is that each vertex 
must have even degree. To do this, first note that an 
Euler circuit starts with a vertex a and continues by 
connecting an edge to a, say {a, b). The edge {a, b} 
contributes one unit to the degree (a). 

Each time the circuit passes through a vertex, it 
contributes two units to the degree of the vertex, 
because the circuit enters through one edge with this 
vertex and exits through another edge. Finally, the 
circuit ends where it started, contributing one unit to 
the degree (a). Therefore, deg(a) must be even, because 
the circuit contributes one unit when it starts, one unit 
when it ends, and two units each time it passes through 
a (if it does). A vertex other than a has even degree 
because the circuit contributes two degrees to its 
degree each time it passes through a vertex. We 
conclude that if a connected graph has an Euler circuit, 
then every vertex must have even degree. 

Is this necessary condition also sufficient for an Euler 
circuit to exist? That is, if all vertices have even degree, 
must an Euler circuit exist in a connected multiple 
graph? This question can be answered positively by a 
construction [2]. 

 

 
 

Figure: Formation of a Euler circuit in graph G 

Hamilton’s Path and Circuit:   

The discussion above about Eulerian graphs 
emphasized edges of travel, here we focus on visiting 
vertices. As stated in [1] if every vertex has degree at 
least | V | /2, then the graph must be Hamiltonian. A 
Hamiltonian circuit or cycle in a graph G, named after 
the 19th-century Irish mathematician William 
Hamilton (1805–1865), is a closed path that visits each 
vertex in G exactly once. (Such a closed path must be a  

cycle). If G admits a Hamiltonian circuit, G is called a 

Hamiltonian graph. 

 Note that an Eulerian circuit traverses each edge 
exactly once, but may repeat vertices, while a 
Hamiltonian circuit visits each vertex exactly once, but 
may repeat edges. We have established necessary and 
sufficient conditions for the existence of paths and 
circuits that include each edge of a multigraph exactly 
once. Can we do the same for simple paths and circuits 
that visit each vertex of the graph exactly once?  In 
honor of Hamilton, we call a cycle in a graph G that 
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contains each vertex in G exactly once, except for the 
starting and ending vertex that appears twice, a 
Hamiltonian cycle [2, 3]. 

Definition: A simple path in a graph G, or Hamiltonian 
graph, is a graph with a closed path that visits each 
vertex exactly once. Such a path is a cycle, called a 
Hamiltonian cycle. Note that an Eulerian cycle visits 
each edge only once, but a vertex may be repeated, but 

a Hamiltonian cycle visits each vertex only once (except 
the initial and terminal vertices), but the edges may not 
[2]. 

To be noticed, A Hamiltonian graph cannot contain a 
vertex of degree zero or one [1]. A simple circuit in a 
graph G that visits each vertex exactly once is called a 
Hamiltonian circuit [2]. 

 

 

 

Figure a : Homilton’s circle     Figure b : Eular’s circle  

Example: Now look at figure below, which of the 
simple graphs has a Hamiltonian circuit or a 
Hamiltonian path? 

Solution: G1 has a Hamiltonian circuit, a, b, c, d, e, a. 

But G2 has a Hamiltonian path, that is, a, b, c, d, and 
does not form a circuit. G3 It has neither a Hamiltonian 
circuit nor a Hamiltonian path, because any path that 
includes all vertices must have one of the edges {a, b}, 
{e, f}, and {c, d} more than once. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: showing that the graph G does not have a Hamiltonian circuit. 

 

As stated in [8],  We solve this example by considering 
the properties of the subgraph which states as follows:  

i) A subgraph H (V ′, E′) of G(V , E) is called the subgraph 
induced by its vertices V ′ if its edge set E′ contains all 
edges in G whose endpoints belong to vertices in H . 

(ii) If v is a vertex in G, then G − v is the subgraph of G 
obtained by deleting v from G and deleting all edges in 
G which contain v. 

(iii) If e is an edge in G, then G − e is the subgraph of G  

obtained by simply deleting the edge e from G. 

Suppose there is a connected subgraph H of G such that 
H has five vertices (a, b, c, d, and e) and five edges and 
such that every vertex of H has degree 2. Since the 
degree of b in G is 4 and every vertex of H has degree  

2, two edges incident on b must be removed from G to 
create H. Edge {a, b} cannot be removed because if it 
were, vertex a would have degree less than 2 in H. 
Similar reasoning shows that edges {e, b}, {b, a}, and {b,  
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d} cannot be removed either. It follows that the degree 
of b in H must be 4, which contradicts the condition 
that every vertex in H has degree 2 in H. Hence no such 
subgraph H exists, and so G does not have a 
Hamiltonian circuit [6]. 

Theorem: by [7], Let G be a connected graph with n 
vertices. Then G is Hamiltonian if n ≥ 3 and n ≤ deg (v) 
for each vertex v in G. 

CONCLUSION 

In this article, we described Euler’s and Hamilton’s 
paths with the help of Graph formation, and at the 
same time, variable examples were presented to 
better understand the mentioned Topic. What was 
received from this article is that Euler’s path only 
focused on edges that is Eulerian circuit traverses each 
edge exactly once, but may repeat vertices, while a 
Hamiltonian circuit visits each vertex exactly once. 
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